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Introduction 

Welcome to this module on Pre-calculus. The course builds upon 

secondary school mathematics to create a bridge aimed at making 

it easy for you to transition from secondary school to college 

mathematics. Broadly, the course is aimed at reinforcing your 

background in algebra and trigonometry, preparing you for 

subsequent courses such as calculus. The course emphasis on 

algebraic and trigonometric functions, equips you with theoretical 

knowledge and skills in functions, their graphs, relationships 

between functions and problem solving. The gained knowledge 

consequently affords you essential building blocks and 

prerequisites for calculus and courses that follow calculus. The 

material in this module provides a suitable background for 

mathematics and statistics content for everyone intending to do 

more mathematics in years three and four. This module is a self–

contained resource, consisting of explanatory text, activities, 

examples and exercises. The textual material is presented in such 

a way that you yourself become involved in the development of 

ideas. Throughout the module, you have activities to introduce a 

concept or summarise a textual material. 

The questions in the examples and exercises are mostly based on 

real problems. As such they are a crucial part of the learning 

process. 

You are encouraged to work through them with an open mind. 
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Module Outcomes 

By the end of the module, learners should be able to: 

i. Use language of sets to conceptualize mathematical problems 

ii. Solve equalities and inequalities 

iii. Graph equations and functions 

iv. Solve optimization problems without the use of Calculus 

v. Apply methods learned in the context of logarithmic and 

exponential functions 

# Module Learning Outcomes Units Covered 

1 2 3 4 5 
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Use language sets to conceptualize 

mathematical problems 

     

2 Solve equalities and inequalities      

3 Graph equations and functions      

4 Solve optimization problems 

without the use of calculus 

     

5 Apply methods learned in the 

context of logarithmic and 

exponential functions 

     

 

 

Module Structure 

From the table of contents, the module is divided into 5 (Five) units. Each 

unit is divided into several sections. Each unit has a core text and an 

exercise at the end. You are required to read and practice, thereafter 

attempt the exercise, if any, before proceeding to the next unit. 

Assessments 

A. Continuous assessments: 40% 

B. End of semester examination: 60% 

C. Course total: 100% 

Prescribed Text book 

1. Cohen D et al, Precalculus: A Problem Oriented Approach, 7th 

edition Brookes/Cole Publishing, 2011. 
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Recommended Textbooks 

1. Larson R. Precalculus: Functions and Graphs, Boston: Houghton 

Mifflin, 2005 

2. Swokowski EW and Cole JA, Precalculus, Thomson/Cole, 2008. 

Time Frame 

You are expected to spend a minimum of 56 hours of study on this 

module. In addition, there shall be an arranged 2 weeks contact with 

lecturers from the University. You are encouraged to spend your time 

judiciously solving the problems contained herein, that way mastery 

becomes easy and you may thereafter reap the maximum benefit from 

the course. 

Study skills 

As a distance education student, you will meet a lot of challenges in your 

studies. Particularly, because you will not always have a lecturer and 

fellow students to consult. You need, therefore, to make a strategy for 

yourself which will make you succeed. Firstly, draw a working time-table 

and stick to it. Secondly, you should know your strengths and 

weaknesses; capitalize on your strengths. Thirdly, work judiciously on all 

the task and assignments. Be truthful since no one is monitoring what 

you are doing. Submit all your assignments on time. 

 

Studying at a distance 

There are many advantages to studying by distance education – a full set 

of learning materials is provided, and you study close to home in your 

own community. You can also plan some of your study time to fit in with 

other commitments like work or family. However, there are also 
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challenges. Learning at a distance from your learning institution requires 

discipline and motivation. Here are some tips for studying at a distance. 

i) Plan – You should give priority to your study sessions. Make a 

study schedule and try to stick to it. Set specific days and 

times each week for study and keep them free of other 

activities. Make a note of the dates that your assessment 

pieces are due and plan for extra study time around those 

dates. 

ii)  Manage your time – You are encouraged to set aside a 

reasonable amount of time for each unit. Don’t be too 

ambitious or you won’t be able to keep up the pace. Work in 

productive blocks of time and include regular rests. 

iii) Be organised – Have your study materials organised in one 

place and keep your notes clearly labelled and sorted. Work 

through the topics in your study guide systematically and seek 

help for difficulties straight away. Avoid procrastination. 

iv) Find a good place to study – Most people need order and 

quiet to study effectively, so try to find a suitable place to do 

your work preferably somewhere where you can leave your 

study materials ready until next time. 

v) Ask for help if you need it – This is the most vital part of 

studying at a distance. No matter what the difficulty is, seek 

help from your course facilitator or fellow students straight 

away. 

vi) Don’t give up – If you miss deadlines for assessment pieces, 

speak to your course facilitator – together you can work out 

what to do (you may contact Mzuzu University CODeL where 

and when needed). Talking to other students can also make a 

difference to your study progress. Seeking help when you 
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need it is a key way of making sure you complete your studies 

– so don’t give up! 
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UNIT 1 Fundamentals 

Unit Introduction 

Welcome to unit 1: Fundamentals of Pre-calculus. The aim of this 

unit is to introduce you to the basic concepts of Pre-calculus.   

 

Unit learning objectives 

By the end of this unit, you should be able to: 

i) Describe sets of real numbers 

ii) Describe absolute values 

iii) Make graph regions of the coordinate planes 

iv) Find the equation of a circle 

v) Discuss the three aspects of symmetry 

vi) Solve inequalities 

vii) Solve quadratic inequalities and other types of equations 

1.1. Real Numbers 

Real numbers are used in everyday life to describe quantities such 

as age, weight, price, population etc. A real number is any number 

that can be expressed in decimal form. You can represent real 

numbers as points on a number line as shown below: 

 

Figure 1.1. 

The point associated with the number zero is referred to as the 

origin. Each real number can be identified with exactly one point 

on the line and with each point on the line, you can identify exactly 



2 

one real number. The fundamental fact here is that there is a one-

to-one correspondence. 

Real numbers consist of natural numbers, integers, rational 

numbers and irrational numbers. 

Natural numbers are just ordinary counting numbers: 1, 2, 3 and 

so on. Integers are just the natural numbers along with their 

negatives and zero. Examples are -2, 0, 1, 2. Rational numbers 

are ratios of two integers. For example,  is a rational number. It 

can also be shown that a number is rational if and only if its decimal 

expansion terminates. Irrational numbers are the numbers which 

are not rational. 

The decimal expansion of irrational numbers does not terminate. 

For example, π is irrational. 

The following flowchart shows you the sets of real numbers. 

 

Figure 1.2. Subsets of Real Numbers 

This is also shown below: 
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Figure 1.3. Subsets of Real Numbers 

1.1.1. Ordering of Real Numbers. One important property of 

real numbers that you must know is that they are ordered. If a and 

b are real numbers, a is less than b if b − a is positive. The order of 

a and b is denoted by the inequality a < b. This relationship can 

also be described by saying that b is greater than a and writing b > 

a. The inequality a ≤ b means that a is less than or equal to b, and 

the inequality b ≥ a means that b is greater than or equal to a. The 

symbols <, >, ≤, and ≥ are inequality 

symbols. 

Inequalities can be used to describe subsets of real numbers called 

intervals. Intervals can be bounded or unbounded. In the figure 

below, you will see bounded intervals. The real numbers a and b, 

are the endpoints of each interval. An interval is closed if the 

endpoints are included in the interval, and it is open if the endpoints 

are not included 

in the interval. 
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Figure 1.4. Intervals 

Example 1.1. (a) −2 < x < 3 consists of all real numbers between 

−2 and 3 but −2 and 3 are not included. 

(b) −2 ≤ x ≤ 3 consists of all real numbers between −2 and 3, and −2 

and 3 are included. 

(c) −2 ≤ x < 3 consists of all real numbers from −2 to 3 but only 3 is not 

included. 

Below, you will see unbounded intervals. Positive infinity (∞) and 

negative infinity (−∞) do not represent real numbers. They are 

symbols convenient to describe the unboundedness of an interval. 

 

Figure 1.5. Unbounded Intervals 
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Example 1.2. Using inequality notation to describe each of the fol- 

lowing: 

(a) c is at most 2, 

Solution: 

c ≤ 2. 

(b) m is at least −3, 

Solution: 

m ≥ −3. 

(c) All x in the interval (−3,5], 

Solution: 

−3 < x ≤ 5. 

The Law of Trichotomy states that for any two real numbers a and 

b, precisely one of three relationships is possible: 

 a = b, a < b, a > b. 

Activity 1.1. (1) Use inequality notation to describe the following: 

(a) [−2,5) 

(b) (−∞,0) 

(2) Find the indicated set if 

 A = {x|x ≥ −2} B = {x|x < 4} C = {x| − 1 < x ≤ 5} 

(a) B ∪ C 

(b) A ∩ C (c) A ∩ B 

1.1.2. Properties of Real Numbers. For any real numbers a, 

b and c, the following properties hold: 
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(1) Commutative Property 

 

a + b = b + a, 

ab = ba. 

(2) Associative Property 

 

(a + b) + c = a + (b + c) 

(ab)c = a(bc) 

(3) Distributive Property 

 

a(b + c) = ab + ac 

(b + c)a = ab + ac 

1.1.3. Addition and Subtraction of Real Numbers. The 

number 0 is called the additive identity because a + 0 = a for every 

real number a. Every real number a has a negative −a that satisfies 

a + (−a) = 0. 

By definition, for real numbers a and b 
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a − b = a + (−b). 

Properties of Negatives 

 

(1) (−1)a = −a 

(2) −(−a) = a 

(3) (−a)b = a(−b) = −(ab) 

(4) (−a)(−b) = ab 

(5) −(a + b) = −a − b 

(6) −(a − b) = −a + b = b − a 

Example 1.3. Let x, y, and z be real numbers 

(a) −(x + z) = −x − z 

(b) −(x + y − z) = −x − y − (−z) = −x − y + z 

1.1.4. Multiplication and Division of Real Numbers. The 

number 1 is called the multiplicative identity because for any real 

number a, a · 1 = a. 

Every real number a has an inverse  that satisfies a · (1/a) = 1. 

Division, by definition, for any real numbers a and b such that b 6= 

0, 

is given by 

. 

Properties 
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(6) If ab = dc, then ad = bc. 

Example 1.4. Evaluate  + . 

Solution: 

We first find the least common denominator (LCD). We first express 

the numbers 36 and 120 as products of prime powers of their prime 

factors. Thus, 36 = 22 ·32 and 120 = 23 ·3·5. The LCD is the product 

of greatest prime powers. Hence, LCD = 23 · 32 · 5. 

Then 

. 

Activity 1.2. (1) Evaluate 

 

(2) Simplify 

 

1.2. Exponents and Radicals 

1.2.1. Exponents. If a is a real number and n is a positive integer, 

then the nth power of a is 

an = a · a · a · ··· · a 

 

| {z } n factors 

The number a is called the base, and n the exponent. 
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Example 1.5. , 

(b) −34 = −(3 · 3 · 3 · 3) = −81, 

(c) (−3)4 = (−3)(−3)(−3)(−3) = 81. 

Laws of Exponents 

 

Example 1.6. Simplify 

 

 

Activity 1.3. Simplify 

 

1.2.2. Radicals. We know that √a = b means b2 = a and b ≥ a. 
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√ 

It is clear to see that a works only when a ≥ 0. 

Definition 1.1. If n is any positive integer, then the principal nth 

root 

of a is defined as follows 

 
√

n  n 

a = b means b = a. 

If n is even, we must have a ≥ 0 and b ≥ 0. 

√ 

Example 1.7. (a) 4 81 = 3 since 34 = 81 and 3 ≥ 0. 

√ 

(b) 3 −8 = −2 since (−2)3 = −8. 

 √ √  √ 

It is good to note that 42 = 16 = 4 and 
p

(−4)2 = 16 = 4 = |−4|. √ 

So a2 = a is not always true. In general, it is true when a ≥ 0. 

√ 

Actually, for any even root n, n an = |a|. 

Properties of nth roots 

 
√ 

(4) n an = a if n is odd 

√ 

(5) n an = |a| if n is even 

Example 1.8. Simplify 
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Activity 1.4. Simplify 

 

1.2.3. Rational Exponents. 

Definition 1.2. For any rational exponent  in lowest terms where 

m and n are integers and n > 0, we define 

 

or equivalently 

√ 

am/n = n am. 

If n is even, then we require that a ≥ 0. 

Example 1.9.

 

Activity 1.5. Perform the operations and simplify. 
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1.2.4. Rationalizing the Denominator. It is often useful to 

eliminate the radical in the denominator by multiplying both the 

numerator and denominator by an appropriate expression. The 

process is called rationalizing the denominator. 

For instance, 

. 

√ 

If the denominator is of the form n am, then 

 √n √n √n √n 

 am · an−m = an−m+m = an = a. 

Example 1.10.  

Activity 1.6. Rationalize the denominator: 

 

 

1.3. Absolute Value and Distance 

Definition 1.3. The absolute value of a real number a is the 

distance from a to 0 on the real number line, denoted by |a|. 
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Distance is always positive or zero. In general, |a| ≥ 0. If a is a real 

number, then the absolute value of a is 

. 

Example 1.11. (a) |3| = 3 

(b) | − 3| = −(−3) = 3 

(c) |0| = 0 

(d) |3 − π| = −(3 − π) = π − 3 since 3 < π =⇒ 3 − π < 0. 

Properties of Absolute Values 

 

 

Definition 1.4. If a and b are real numbers, then the distance 

between 

the points a and b on the real line is 

d(a,b) = |b − a|. 

Activity 1.7. Evaluate each expression 
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1.4. Rectangular Coordinates 

Two perpendicular lines that intersect at zero on each line are 

drawn. The horizontal line has positive vlues on the right and an 

arrow points that side. The vertical line has positive values upwards 

of the intersection. The horizontal line is the x-axis and the vertical 

line is the y-axis. The point of intersection is known as the Origin 

O. The axes divide the plane into 4 quadrants as shown below: 

A point on the xy-plane is located by a unique pair of numbers (a,b) 

where a is the x-coordinate and b is the y-coordinate. 

 

Figure 1.6. 

1.4.1. Graphing Regions in the Coordinate Plane. 

Example 1.12. (a) {(x,y)|x ≥ 0} 

Solution: 

This region consists of all points whose x-coordinates are 

positive or 0. 
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Figure 1.7. 

(b) {(x,y)||y| < 1} 

Solution: 

The region consists of all the points whose y-coordinates 

lie between −1 and 1. 

Activity 1.8. Sketch the regions given by each set. 

 
Figure 1.8. 

(a) {(x,y)|y < 2} 

(b) {(x,y)||x| < 3} 

1.4.2. Distance and Midpoint Formulas. 

Definition 1.5. The distance between the points A(x1,y1) and 

B(x2,y2) in the plane is 

d(A,B) = 
p

(x2 − x1)2 + (y2 − y1)2. 
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Figure 1.9. 

Example 1.13. Which of the points P(1,−2) and Q(8,9) is closer to 

the point A(5,3)? 

Solution: 

We compute the distances d(P,A) and d(Q,A) and see which one is 

smaller. 

 √ √ 

 d(P,A) = 
p

(5 − 1)2 + (3 − (−2))2 = 42 + 52 = 41 

√ 

 d(Q,A) = 
p

(5 − 8)2 + (3 − 9)2 = 
p

(−3)2 + (−6)2 = 45 

So, d(P,A) < d(Q,A), then P is closer to A. 

Definition 1.6. The midpoint of the line segment from A(x1,y1) to 

B(x2,y2) is 

 . 

Example 1.14. Find the midpoint of the line segment from P(1,−2) 

to A(5,8). 

Solution: 
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The midpoint is 

. 

Example 1.15. Show that the quadrilateral with vertices P(1,2), 

Q(4,4), R(5,9) and S(2,7) is a parallelogram by proving that its two 

diagonals bisect each other. 

Solution: 

We look at the midpoints of PR and SQ as shown in the figure 

below. If the midpoints are equal, then the diagonals bisect each 

other. 

Midpoint of . 

Midpoint of . The midpoints are equal. 

Therefore, the diagonals bisect each other and the quadrilateral is 

a 

parallelogram. 

 

Figure 1.10. 

Activity 1.9. (1) Draw the rectangle with vertices A(1,3), B(5,3), 

C(1,−3) and D(5,−3) on a coordinate plane. Find 

the area of the rectangle. 
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(2) Show that the triangle with vertices A(0,2), B(−3,−1) and (−4,3) is 

isosceles. 

(3) The point M in the figure below is the midpoint of the line segment 

AB. Show that M is equidistant from the vertices of 

triangle ABC. 

 

Figure 1.11. 

1.4.3. Graphs of Equations in Two Variables. The graph of an 

equation in x and y is the set of all points (x,y) in the coordinate 

plane that satisfy the equation. 

Example 1.16. Sketch the graph of the equation 2x − y = 3. 

Solution: 

Firstly, we make y the subject, 

y = 2x − 3. 

We then come up with a table of values as below: 
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Figure 1.12. 
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The graph is as follows: 

 

Figure 1.13. 

Definition 1.7. The x-intercept is the x-coordinate of a point where 

a graph intersects the x-axis. The y-intercept is the y-coordinate pf 

a point where a graph intersects the y-axis. The value of y at the 

xintercept is 0 and the value of x at the y-intercept is 0. 

Example 1.17. Find the x- and y-intercepts of the graph of the 

equation y = x2 − 2. 

Solution: 

To find the x-intercepts, we set y = 0, 

0 = x2 − 2 

 

 √ √ 

Therefore, the x-intercepts are x = 2 and x = − 2. 

The y-intercept is where x = 0. Thus y = 0−2 = −2 is the y-intercept. 
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Figure 1.14. 

Activity 1.10. (1) Determine the x and y intercepts in the following: 

(a) y = x2 + 3x + 2 

(b) y = 6x3 + 9x2 + x (c) y = 11x − 2x2 − 

x3 

(2) Graph the equations. 

(a) 3x + 2y = 6 

(b) y = x3 − 3x + 1 

1.5. Equation of a Circle 

An equation of the circle with center (h,k) and radius r is 

(x − h)2 + (y − k)2 = r2. 

This is called the standard form of the equation of the circle. If the 

center of the circle is the origin (0,0), then the equation becomes 

x2 + y2 = r2. 

Example 1.18. Graph each equation. 

(a) x2 + y2 = 25. 

Solution: 
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We can rewrite the equation as (x − 0)2 + (y − 0)2 = 52. So 

the radius is 5 and the center is (0,0). 

 

Figure 1.15. 

(b) (x − 2)2 + (y + 1)2 = 25. 

Solution: 

The center is (2,−1) and radius 5. 

 

Figure 1.16. 

Example 1.19. (a) Find an equation of a circle with radius 3 and 

center (2,−5). 

Solution: 
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We have r = 3, center is (2,−5), thus h = 2 and k = −5. The 

equation is 

(x − 2)2 + (y + 5)2 = 9. 

(b) Find an equation of the circle that has the points P(1,8) and 

Q(5,−6) as the endpoints of a diameter. 

Solution: 

The midpoint of the diameter PQ is the center of the circle. 

. 

The radius r is the distance from P to the center. Thus, 

by the distance formula 

r2 = (3 − 1)2 + (1 − 8)2 = 22 + (−7)2 = 53. 

The equation is therefore 

(x − 3)2 + (y − 1)2 = 53. 

 

Figure 1.17. 
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Example 1.20. Show that the equation x2 + y2 + 2x − 6y + 7 = 0 

represents a circle, and find the center and radius of the circle. 

Solution: 

x2 + y2 + 2x − 6y + 7 = 0 

(x2 + 2x) + (y2 − 6y) = −7 

(x2 + 2x + 1) − 1 + (y2 − 6y + 9) − 9 = −7 

(x2 + 2x + 1) + (y2 − 6y + 9) = −7 + 1 + 9 

(x + 1)2 + (y − 3)2 = 3 

√ 

Therefore, the center is (−1,3) and the radius r = 3. 

Activity 1.11. (1) Find an equation of the circle that satisfies 

the given conditions: 

(a) Center (2,−1); radius 3. 

(b) Center (−1,5); passes through (−4,−6). 

(c) Endpoints of a diameter are P(−1,3) and Q(7,−5). 

(d) Center (7,−3); tangent to the x-axis. 

(2) Find the equation of the circle shown below: 

 

Figure 1.18. 
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(3) Show that the equation represents a circle, find the center and 

radius of the circle. 

(a) x2 + y2 − 4x + 10y + 13 = 0; (b) 

2x2 + 2y2 − 3x = 0. 

 

(d) 3x2 + 3y2 + 6x − y = 0 

1.6. Symmetry 

Given a graph, if points on the graph on the left of a line are 

reflections of points on the other side of the line, then we say the 

graph is symmetric with respect to that line. We will discuss three 

aspects of symmetry. 

1.6.1. Symmetry with Respect to the x-axis. If a point (x,y) is 

on the graph, then the point (x,−y) is also on the graph. In other 

words, the graph is unchanged when reflected on the x-axis. We 

can test for this symmetry by observing the equation when y is 

replaced 

with −y (equation is unchanged). 

 

Figure 1.19. 

1.6.2. Symmetry with Respect to the y-axis. If a point (x,y) is 

on the graph, then (−x,y) is also on the graph. In other words, the 
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graph is unchanged when reflected on the y-axis. We can test for 

this symmetry by observing the equation when x is replaced by −x. 

 

Figure 1.20. 

1.6.3. Symmetry with Respect to the Origin. If a point (x,y) is 

on the graph, then (−x,−y) is also on the graph. In other words, the 

graph is unchanged when reflected on the origin. We can test for 

this symmetry by observing that the equation is unchanged if x and 

y 

are replaced by −x and −y, respectively. 

 

Figure 1.21. 

Example 1.21. (a) Test the equation x = y2 for symmetry and 

sketch the graph. 

Solution: 

The equation is unchanged if y is replaced by −y, 

x = (−y)2 = y2. 

We plot points for y > 0 and reflect the graph in the x-axis. 
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Figure 1.22. 

 

Figure 1.23. 

(b) Test the equation y = x3 − 9x for symmetry and sketch its 

graph. 

Solution: Replacing x by −x and y by −y in the equation, we 

get 

−y = (−x)3 − 9(−x) 

−y = −x3 + 9x y 

= x3 − 9x 

The equation is unchanged. The graph is symmetric with 

respect to the origin. We sketch it by plotting points for x > 

0 and then reflect it about the origin. 
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Figure 1.24. 

 

Figure 1.25. 

Activity 1.12. (1) Test the equation for symmetry. 

(a) y = x4 + x2 

(b) y = x3 + 10x 

(c) y = x2 + |x| 

(d) x4y4 + xy = 1 

(2) Complete the graph using the indicated symmetry. 

(a) Symmetry with respect to the y-axis. 
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Figure 1.26. 

(b) Symmetry with respect to the origin. 

 

Figure 1.27. 

1.7. Inequalities 

There are some problems in algebra that lead to inequalities. An 

inequality looks just like an equation except that in the place of the 

equal 

sign is one of the symbols <, >, ≤ or ≥, e.g., 4x + 7 ≤ 19. 

Solving an inequality that contains a variable means to find all 

values 

that make the inequality true. For example: 
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Figure 1.28. 

In the table, it can be seen that values of x greater than 3 do not 

satisfy the inequality. We can use the notation for intervals or the 

number line to represent a solution set. 

Rules for Inequalities 

(1) A ≤ B ⇐⇒ A + C ≤ B + C 

(2) A ≤ B ⇐⇒ A − C ≤ B − C 

(3) If C > 0, then A ≤ B ⇐⇒ CA ≤ CB 

(4) If C < 0, then A ≤ B ⇐⇒ CA ≥ CB 

(5) If A > 0 and B > 0, then A ≤ B ⇐⇒ A1 ≥ B1 

(6) If A ≤ B and C ≤ D, then A + C ≤ B + D 

Example 1.22.(a) Solve the inequality 3x < 9x + 4 and sketch the 

solution set. 

Solution: 

3x < 9x + 4 

3x − 9x < 9x + 4 − 9x 
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The solution set is (−2/3,∞). We can also represent the so- 

lution on the number line as follows: 

 

Figure 1.29. 

(b) Solve the inequality 4 ≤ 3x − 2 < 13. 

Solution: 

4 ≤ 3x − 2 < 13 

6 ≤ 3x < 15 

2 ≤ x < 5 

The solution set is [2,5). We can also represent the 

solution 

set on the number line: 

 

Figure 1.30. 

Activity 1.13. Solve the inequality. Express the solution using 

interval notation and graph the solution set. 

(a) 3x + 11 < 5 

(b) 5 − 3x ≤ −16 

(c) 2(7x − 3) ≤ 12x + 16 
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1.8. Nonlinear Inequalities 

We look at how to find solutions for inequalities which are not linear 

in this section. 

1.8.1. Sign of a Product or Quotient. If a product or a quo- 

tient has an even number of negative factors, then its value is 

positive. Otherwise, if it has an odd number of negative factors, 

then its value 

is negative. 

For example, to solve x2 − 5x ≤ −6, we first move all terms to the 

left 

hand side and factor to get 

(x − 2)(x − 3) ≤ 0. 

Since this product is supposed to be less than 0, we must 

determine where the product is negative. Thus, the sign of the 

product depends on the sign of the factors. 

Guidelines for Solving Inequalities 

(1) Move all factors to one side. 

(2) Factor. 

(3) Find the intervals. Determine the values for which each factor is 

zero. These numbers will divide the real line into intervals. List the 

intervals that are determined by these numbers 

(4) Make a table or diagram with intervals as columns and factors as 

rows. Include another row for the product of the factors. 
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Use test values in the intervals to determine if a factor is positive or 

negative in the interval. 

(5) Use the last row to determine whether the product is 

positive or negative in the intervals. In other words, find 

which intervals satisfy the inequality. 

Example 1.23. (a) Solve the inequality x2 ≤ 5x − 6. Solution: 

– Move all terms to one side: 

x2 − 5x + 6 ≤ 0 

– Factor: 

(x − 2)(x − 3) ≤ 0 

– Find the intervals: The zeros are x = 2 and x = 3. 

(−∞,2),(2,3),(3,∞) 

– Make a table: 

 

Figure 1.31. 

 

Figure 1.32. 

– Solve: (x − 2)(x − 3) is negative on the interval (2,3). 
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Thus, the solution of the inequality (x − 2)(x − 3) ≤ 0 is 

x|2 ≤ x ≤ 3 = [2,3]. 

(b) Solve the inequality x(x − 1)2(x − 3) < 0. 

Solution: 

The terms are already on one side and the expression 

already 

factored. So the zeros are x = 0, x = 1 and x = 3. So the 

intervals are (−∞,0),(0,1),(1,3),(3,∞). Thus, 

 

Figure 1.33. 

From the diagram above, we see that x(x − 1)2(x − 3) < 

0 for x in the intervals (0,1) and (1,3). The solution set is 

the 

union of these two intervals: 

(0,1) ∪ (1,3). 

We can also represent the solution on a number line as 

follows: 

 

Figure 1.34. 

(c) Solve the inequality . Solution: 

We first move all terms to the left hand side: 
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The intervals are (−∞,0),(0,1),(1,∞). Thus, 

 

Figure 1.35. 

We find that the interval where . 

Activity 1.14. Solve the nonlinear inequality. Express the solution 

in 

interval notation and graph the solution set. 

(a) x2 < x + 2 

(b) (x − 2)2(x − 3)(x + 1) ≤ 0 
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Figure 1.36. 

1.8.2. Absolute Value Inequalities. 

Example 1.24. Solve the inequality: 

(a) |x − 5| < 2, Solution: 

This inequality is equivalent to 

−2 < x − 5 < 2 

3 < x < 7 

The solution set is (3,7). 

 

Figure 1.37. 

(b) |3x + 2| ≥ 4, Solution: 

 3x + 2 ≥ 4 or 3x + 2 ≤ −4 

 2 3x ≤ −6 

x ≤ −2 

The solution set is  

[2/3,∞). 

Activity 1.15. Solve the nonlinear inequality. Express the solution 

in 

interval notation and graph the solution set. 

(a) |5x − 2| < 6 
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Unit Summary 

In this unit, you have covered the following 

i) Sets of real numbers 

ii)  Absolute values and distance 

iii)  Rectangular coordinates 

iv)  Equation of a circle 

v)  Symmetry 

vi)  Inequalities and quadratic inequalities 

vii)  Other types of equations 

 

You were also required to solve some problems. You may be able to 

weigh your understanding of the module by grading your scores as 

follows: 25% (try to revisit all exercises, so as to boost your 

understanding); 50% (focus more on the areas that seemed a little bit 

tough); 75-100% (keep up the good work, however, don’t forget to refresh 

your knowledge by coming back to the exercises now and again).   
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UNIT 2 Sets and Functions 

2.1. Unit Introduction 

In the previous chapter you learnt about sets of real numbers, 

absolute values and distance, rectangular coordinates, equation of 

a circle, symmetry, inequalities and quadratic inequalities and other 

types of equations.  

In this chapter you would learn about sets and their functions. As 

you have gained a certain amount of mathematical maturity from 

the previous unit, it is necessary to find and study applications of 

abstract algebra.  

 

Unit learning objectives 

By the end of this unit, you should be able to: 

i) Find and study applications of abstract algebra 

ii) Read and understand mathematical proofs 

iii) Acquire a basic knowledge of set theory, equivalence 

relations, and functions 

2.2. A Short Note on Proofs 

Abstract mathematics is different from other sciences. In laboratory 

sciences such as chemistry and physics, scientists perform 

experiments to discover new principles and verify theories. 

Although mathematics is often motivated by physical 

experimentation or by computer simulations, it is made rigorous 

through the use of logical arguments. In studying abstract 

mathematics, we take what is called an axiomatic approach; that is, 

we take a collection of objects S and assume some rules about 
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their structure. These rules are called axioms. Using the axioms for 

S, we wish to derive other information about S by using logical 

arguments. We require that our axioms be consistent; that is, they 

should not contradict one another. We also demand that there not 

be too many axioms. If a system of axioms is too restrictive, there 

will be few examples of the mathematical structure. 

A statement in logic or mathematics is an assertion that is either 

true 

or false. Consider the following examples: 

• 3 + 56 − 13 + 8/2. 

• All cats are black. 

• 2 + 3 = 5. 

• 2x = 6 exactly when x = 4. 

• If ax2 + bx + c = 0 and a 6= 0, then 

. 

• x3 − 4x2 + 5x − 6. 

All but the first and last examples are statements, and must be 

either true or false. 

A mathematical proof is nothing more than a convincing argument 

about the accuracy of a statement. Such an argument should 

contain enough detail to convince the audience; for instance, we 

can see that the statement “2x = 6 exactly when x = 4” is false by 

evaluating 2 · 4 and noting that 6 6= 8, an argument that would 

satisfy anyone. Of course, audiences may vary widely: proofs can 

be addressed to another student, to a professor, or to the reader of 

a text. If more detail than needed is presented in the proof, then the 
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explanation will be either long-winded or poorly written. If too much 

detail is omitted, then the proof may not be convincing. Again, it is 

important to keep the audience in mind. High school students 

require much more detail than do graduate students. A good rule of 

thumb for an argument in an introductory abstract algebra course is 

that it should be written to convince one’s peers, whether those 

peers be other students or other readers of the text. 

Let us examine different types of statements. A statement could be 

as simple as “10/5 = 2”; however, mathematicians are usually 

interested in more complex statements such as “If p, then q,” where 

p and q are both statements. If certain statements are known or 

assumed to be true, we wish to know what we can say about other 

statements. Here p is called the hypothesis and q is known as the 

conclusion. Consider 

the following statement: If ax2 + bx + c = 0 and a 6= 0, then 

. 

The hypothesis is ax2 + bx + c = 0 and a 6= 0; the conclusion is 

. 

Notice that the statement says nothing about whether or not the 

hypothesis is true. However, if this entire statement is true and we 

can 

show that ax2 + bx + c = 0 with a 6= 0 is true, then the conclusion 

must be true. A proof of this statement might simply be a series of 

equations: 
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. 

If we can prove a statement true, then that statement is called a 

proposition. A proposition of major importance is called a theorem. 

Sometimes instead of proving a theorem or proposition all at once, 

we break the proof down into modules; that is, we prove several 

supporting propositions, which are called lemmas, and use the 

results of these propositions to prove the main result. If we can 

prove a proposition or a theorem, we will often, with very little effort, 

be able to derive other related propositions called corollaries. 

Cautions and Suggestions 

There are several different strategies for proving propositions. In 

addition to using different methods of proof, students often make 

some common mistakes when they are first learning how to prove 

theorems. To aid you, as you studying abstract mathematics for the 

first time, we list here some of the difficulties that you may 

encounter and some of the strategies of proof available to them. It 

is a good idea for you to keep referring back to this list as a 

reminder. (Other techniques of proof will become apparent 

throughout this chapter and the remainder of the text.) 
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• A theorem cannot be proved by example; however, the 

standard way to show that a statement is not a theorem is 

to 

provide a counterexample. 

• Quantifiers are important. Words and phrases such as 

only, for all, for every, and for some possess different 

meanings. 

• Never assume any hypothesis that is not explicitly stated in 

the theorem. You cannot take things for granted. 

• Suppose you wish to show that an object exists and is 

unique. First show that there actually is such an object. To 

show that 

it is unique, assume that there are two such objects, say r 

and s, and then show that r = s. 

• Sometimes it is easier to prove the contrapositive of a 

statement. Proving the statement “If p, then q” is exactly 

the same as proving the statement “If not q, then not p.”  

• Although it is usually better to find a direct proof of a 

theorem, this task can sometimes be difficult. It may be 

easier to assume that the theorem that you are trying to 

prove is false, and to hope that in the course of your 

argument you are forced to make some statement that 

cannot possibly be true. 

You should remember that one of the main objectives of higher 

mathematics is proving theorems. Theorems are tools that make 

new and productive applications of mathematics possible. From the 

examples given, you can gain insight into existing theorems and 
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foster intuitions as to what new theorems might be true. 

Applications, examples, and proofs are tightly 

interconnected—much more so than they may seem at first 

appearance. 

2.3. Set Theory 

A set is a well-defined collection of objects; that is, it is defined in 

such 

a manner that we can determine for any given object x whether or 

not x belongs to the set. The objects that belong to a set are called 

its elements or members. We will denote sets by capital letters, 

such as A or X; if a is an element of the set A, we write a ∈ A. 

A set is usually specified either by listing all of its elements inside a 

pair of braces or by stating the property that determines whether or 

not an object x belongs to the set. We might write 

 
for a set containing elements x1,x2,...,xn or 

X = {x : x satisfies P} 

if each x in X satisfies a certain property P. For example, if E is the 

set of even positive integers, we can describe E by writing either 

 E = {2,4,6,...} or E = {x : x is an even integer and x > 0}. 

We write 2 ∈ E when we want to say that 2 is in the set E, and −3 

∈/ E to say that −3 is not in the set E. 

Some of the more important sets that we will consider are the 

following: 
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N = {n : n is a natural number} = {1,2,3,...}; 

Z = {n : n is an integer} = {...,−1,0,1,2,...}; 

Q = {r : r is a rational number} = {p/q : p,q ∈ Z where q = 06}; 

R = {x : x is a real number}; 

C = {z : z is a complex number}. 

We find various relations between sets and can perform operations 

on sets. A set A is a subset of B, written A ⊂ B or B ⊃ A, if every 

element of A is also an element of B. For example, 

{4,5,8} ⊂ {2,3,4,5,6,7,8,9} 

and 

N ⊂ Z ⊂ Q ⊂ R ⊂ C. 

Trivially, every set is a subset of itself. A set B is a proper subset of 

a set A if B ⊂ A but B 6= A. If A is not a subset of B, we write A 6⊂ 

B; for example, {4,7,9} 6⊂ {2,4,5,8,9}. Two sets are equal, 

written A = B, if we can show that A ⊂ B and B ⊂ A. 

It is convenient to have a set with no elements in it. This set is 

called the empty set and is denoted by ∅. Note that the empty set is 

a subset 

of every set. 

To construct new sets out of old sets, we can perform certain 

operations: the union A ∪ B of two sets A and B is defined as 

A ∪ B = {x : x ∈ A or x ∈ B}; 

the intersection of A and B is defined by 
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A ∩ B = {x : x ∈ A and x ∈ B}. 

If A = {1,3,5} and B = {1,2,3,9}, then 

 A ∪ B = {1,2,3,5,9} and A ∩ B = {1,3}. 

We can consider the union and the intersection of more than two 

sets. In this case we write 

 

and 

 

for the union and intersection, respectively, of the sets A1,...,An. 

When two sets have no elements in common, they are said to be 

disjoint; for example, if E is the set of even integers and O is the set 

of odd integers, then E and O are disjoint. Two sets A and B are 

disjoint exactly when A ∩ B = ∅. 

Sometimes we will work within one fixed set U, called the universal 

set. For any set A ⊂ U, we define the complement of A, denoted by 

A0, to be the set 

A0 = {x : x ∈ U and x /∈ A}. 

We define the difference of two sets A and B to be 

A \ B = A ∩ B0 = {x : x ∈ A and x /∈ B}. 

Example 2.1. operations Let R be the universal set and suppose 

that 

 A = {x ∈ R : 0 < x ≤ 3} and B = {x ∈ R : 2 ≤ x < 4}. 
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Then 

A ∩ B = {x ∈ R : 2 ≤ x ≤ 3} 

A ∪ B = {x ∈ R : 0 < x < 4} 

A \ B = {x ∈ R : 0 < x < 2} 

A0 = {x ∈ R : x ≤ 0 or x > 3}. 

Proposition 2.1. Let A, B, and C be sets. Then 

(1) A ∪ A = A, A ∩ A = A, and A \ A = ∅; 

(2) A ∪ ∅ = A and A ∩ ∅ = ∅; 

(3) A ∪ (B ∪ C) = (A ∪ B) ∪ C and A ∩ (B ∩ C) = (A ∩ B) ∩ C; 

(4) A ∪ B = B ∪ A and A ∩ B = B ∩ A; 

(5) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C); 

(6) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 

Proof. We will prove (1) and (3) and leave the remaining results 

to be proven in the exercises. 

(1) Observe that 

A ∪ A = {x : x ∈ A or x ∈ A} 

= {x : x ∈ A} 

= A 

and 

A ∩ A = {x : x ∈ A and x ∈ A} 
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= {x : x ∈ A} = 

A. 

Also, A \ A = A ∩ A0 = ∅. 

(3) For sets A, B, and C, 

A ∪ (B ∪ C) = A ∪ {x : x ∈ B or x ∈ C} 

= {x : x ∈ A or x ∈ B, or x ∈ C} 

= {x : x ∈ A or x ∈ B} ∪ C = 

(A ∪ B) ∪ C. 

A similar argument proves that A ∩ (B ∩ C) = (A ∩ B) ∩ C.  

Theorem 2.1 (De Morgan’s Laws). Let A and B be sets. Then 

(1) (A ∪ B)0 = A0 ∩ B0; 

(2) (A ∩ B)0 = A0 ∪ B0. 

Proof. (1) We must show that (A∪B)0 ⊂ A0 ∩B0 and (A∪B)0 ⊃ A0 

∩ B0. Let x ∈ (A ∪ B)0. Then x /∈ A ∪ B. So x is neither in A nor 

in B, by the definition of the union of sets. By the definition of the 

complement, x ∈ A0 and x ∈ B0. Therefore, x ∈ A0 ∩ B0 and we have 

(A ∪ B)0 ⊂ A0 ∩ B0. 

To show the reverse inclusion, suppose that x ∈ A0 ∩ B0. Then x ∈ 

A0 

and x ∈ B0, and so x /∈ A and x /∈ B. Thus x /∈ A ∪ B and so 

x ∈ (A ∪ B)0. Hence, (A ∪ B)0 ⊃ A0 ∩ B0 and so (A ∪ B)0 = A0 ∩ B0. 
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The proof of (2) is left as an exercise.  Example 2.2. other 

relations Other relations between sets often hold 

true. For example, 

(A \ B) ∩ (B \ A) = ∅. 

To see that this is true, observe that 

(A \ B) ∩ (B \ A) = (A ∩ B0) ∩ (B ∩ A0) = 

A ∩ A0 ∩ B ∩ B0 

= ∅. 

2.4. Cartesian Products and Mappings 

Given sets A and B, we can define a new set A×B, called the 

Cartesian 

product of A and B, as a set of ordered pairs. That is, 

A × B = {(a,b) : a ∈ A and b ∈ B}. 

Example 2.3. cartesian products If A = {x,y}, B = {1,2,3}, and 

C = ∅, then A × B is the set 

{(x,1),(x,2),(x,3),(y,1),(y,2),(y,3)} 

and 

A × C = ∅. 

We define the Cartesian product of n sets to be 

A1 × ··· × An = {(a1,...,an) : ai ∈ Ai for i = 1,...,n}. 
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If A = A1 = A2 = ··· = An, we often write An for A × ··· × A (where A 

would be written n times). For example, the set R3 consists of all of 

3-tuples of real numbers. 

Subsets of A × B are called relations. We will define a mapping or 

function f ⊂ A × B from a set A to a set B to be the special type of 

relation in which for each element a ∈ A there is a unique element b 

∈ B such that (a,b) ∈ f; another way of saying this is that for every 

element 

in A, f assigns a unique element in B. We usually write f : A → B 
f 

or A → B. Instead of writing down ordered pairs (a,b) ∈ A × B, we 

write f(a) = b or f : a 7→ b. The set A is called the domain of f and 

f(A) = {f(a) : a ∈ A} ⊂ B 

is called the range or image of f. We can think of the elements in 

the function’s domain as input values and the elements in the 

function’s 

range as output values. 
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Figure 2.1. Mappings 

Example 2.4. Suppose A = {1,2,3} and B = {a,b,c}. In Figure 2.1 we 

define relations f and g from A to B. The relation f is a mapping, but 

g is not because 1 ∈ A is not assigned to a unique element in B; 

that is, g(1) = a and g(1) = b. 

Given a function f : A → B, it is often possible to write a list de- 

scribing what the function does to each specific element in the 

domain. However, not all functions can be described in this 

manner. For example, the function f : R → R that sends each real 

number to its cube is a mapping that must be described by writing 

f(x) = x3 or f : x 7→ x3. Consider the relation f : Q → Z given by 
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f(p/q) = p. We know that 1/2 = 2/4, but is f(1/2) = 1 or 2? This 

relation cannot be a mapping 

because it is not well-defined. A relation is well-defined if each 

element in the domain is assigned to a unique element in the 

range. 

If f : A → B is a map and the image of f is B, i.e., f(A) = B, then 

f is said to be onto or surjective . In other words, if there exists an 

a ∈ A for each b ∈ B such that f(a) = b, then f is onto. A map is 

one-to-one or injective if a1 6= a2 implies f(a1) 6= f(a2). Equivalently, 

a function is one-to-one if f(a1) = f(a2) implies a1 = a2. A map that is 

both one-to-one and onto is called bijective. 

Example 2.5. one to one onto Let f : Z → Q be defined by f(n) = 

n/1. Then f is one-to-one but not onto. Define g : Q → Z by g(p/q) = 

p where p/q is a rational number expressed in its lowest terms with 

a positive denominator. The function g is onto but not one-to-one. 

Given two functions, we can construct a new function by using the 

range of the first function as the domain of the second function. Let 

f : A → B and g : B → C be mappings. Define a new map, the 

composition of f and g from A to C, by (g ◦ f)(x) = g(f(x)). 
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Figure 2.2. Composition of maps 

Example 2.6. Consider the functions f : A → B and g : B → C 

that are defined in Figure 2.2(a). The composition of these 

functions, g ◦ f : A → C, is defined in Figure 2.2(b). 

Example 2.7. Let f(x) = x2 and g(x) = 2x + 5. Then 

(f ◦ g)(x) = f(g(x)) = (2x + 5)2 = 4x2 + 20x + 25 and 

(g ◦ f)(x) = g(f(x)) = 2x2 + 5. 

In general, order makes a difference; that is, in most cases f ◦g 6= 

g◦f. 

Example 2.8. Sometimes it is the case that f◦g = g◦f. Let f(x) = x3 

√ 

and g(x) = 3 x. Then 

 √3  √3  3 

(f ◦ g)(x) = f(g(x)) = f( x) = ( x) = x 
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and 

√ 

(g ◦ f)(x) = g(f(x)) = g(x3) = 3 x3 = x. 

Example 2.9. Given a 2 × 2 matrix 

 , 

we can define a map TA : R2 → R2 by 

TA(x,y) = (ax + by,cx + dy) 

for (x,y) in R2. This is actually matrix multiplication; that is, 

 . 

Maps from Rn to Rm given by matrices are called linear maps or 

linear transformations . 

Example 2.10. Suppose that S = {1,2,3}. Define a map π : S → S 

by 

 π(1) = 2, π(2) = 1, π(3) = 3. 

This is a bijective map. An alternative way to write π is 

 . 

For any set S, a one-to-one and onto mapping π : S → S is called a 

permutation of S. 

Theorem 2.2. Let f : A → B, g : B → C, and h : C → D. Then 

(1) The composition of mappings is associative; that is, (h◦g)◦f = 

h ◦ (g ◦ f); 
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(2) If f and g are both one-to-one, then the mapping g ◦f is one- 

to-one; 

(3) If f and g are both onto, then the mapping g ◦ f is onto; 

(4) If f and g are bijective, then so is g ◦ f. 

Proof. We will prove (1) and (3). Part (2) is left as an exercise. 

Part (4) follows directly from (2) and (3). 

(1) We must show that 

h ◦ (g ◦ f) = (h ◦ g) ◦ f. 

For a ∈ A we have 

(h ◦ (g ◦ f))(a) = h((g ◦ f)(a)) 

= h(g(f(a))) = 

(h ◦ g)(f(a)) 

= ((h ◦ g) ◦ f)(a). 

(3) Assume that f and g are both onto functions. Given c ∈ C, we 

must show that there exists an a ∈ A such that (g ◦ f)(a) = g(f(a)) = 

c. However, since g is onto, there is a b ∈ B such that g(b) = c. 

Similarly, 

there is an a ∈ A such that f(a) = b. Accordingly, 

(g ◦ f)(a) = g(f(a)) = g(b) = c. 

 

If S is any set, we will use idS or id to denote the identity mapping 

from S to itself. Define this map by id(s) = s for all s ∈ S. A map 
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g : B → A is an inverse mapping of f : A → B if g ◦ f = idA and 

f ◦ g = idB; in other words, the inverse function of a function simply 

“undoes” the function. A map is said to be invertible if it has an 

inverse. We usually write f−1 for the inverse of f. 

3 has inverse f−1(x) = √3 x. 

Example 2.11. The function f(x) = x 

Example 2.12. The natural logarithm and the exponential functions, 

f(x) = lnx and f−1(x) = ex, are inverses of each other provided that 

we are careful about choosing domains. Observe that 

f(f−1(x)) = f(ex) = lnex = x 

and 

f−1(f(x)) = f−1(lnx) = elnx = x 

whenever composition makes sense. 

Example 2.13. inverse matrix Suppose that 

 . 

Then A defines a map from R2 to R2 by 

TA(x,y) = (3x + y,5x + 2y). 

We can find an inverse map of TA by simply inverting the matrix A; 

that is, TA
−1 = TA−1. In this example, 

 ; 
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hence, the inverse map is given by 

TA
−1(x,y) = (2x − y,−5x + 3y). 

It is easy to check that 

TA
−1 ◦ TA(x,y) = TA ◦ TA

−1(x,y) = (x,y). 

Not every map has an inverse. If we consider the map 

TB(x,y) = (3x,0) 

given by the matrix 

 , 

then an inverse map would have to be of the form 

TB
−1(x,y) = (ax + by,cx + dy) 

and 

(x,y) = T ◦ TB
−1(x,y) = (3ax + 3by,0) 

for all x and y. Clearly this is impossible because y might not be 0. 

Example 2.14. Given the permutation 

 

on S = {1,2,3}, it is easy to see that the permutation defined by 
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is the inverse of π. In fact, any bijective mapping possesses an 

inverse, as we will see in the next theorem. 

Theorem 2.3. A mapping is invertible if and only if it is both one-

toone and onto. 

Proof. Suppose first that f : A → B is invertible with inverse g : B 

→ A. Then g ◦ f = idA is the identity map; that is, g(f(a)) = a. 

If a1,a2 ∈ A with f(a1) = f(a2), then a1 = g(f(a1)) = g(f(a2)) = a2. 

Consequently, f is one-to-one. Now suppose that b ∈ B. To show 

that f is onto, it is necessary to find an a ∈ A such that f(a) = b, but 

f(g(b)) = b with g(b) ∈ A. Let a = g(b). 

Now assume the converse; that is, let f be bijective. Let b ∈ B. 

Since 

f is onto, there exists an a ∈ A such that f(a) = b. Because f is one-

to-one, a must be unique. Define g by letting g(b) = a. We have 

now constructed the inverse of f.  

2.5. Equivalence Relations and Partitions 

A fundamental notion in mathematics is that of equality. We can 

generalize equality with the introduction of equivalence relations 

and equivalence classes. An equivalence relation on a set X is a 

relation 

R ⊂ X × X such that 

• (x,x) ∈ R for all x ∈ X (reflexive property); 

• (x,y) ∈ R implies (y,x) ∈ R ( symmetric property); 
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• (x,y) and (y,z) ∈ R imply (x,z) ∈ R ( transitive property). 

Given an equivalence relation R on a set X, we usually write x ∼ y 

instead of (x,y) ∈ R. If the equivalence relation already has an 

associated notation such as =, ≡, or ∼=, we will use that notation. 

Example 2.15. Let p, q, r, and s be integers, where q and s are 

nonzero. Define p/q ∼ r/s if ps = qr. Clearly ∼ is reflexive and 

symmetric. To show that it is also transitive, suppose that p/q ∼ r/s 

and r/s ∼ t/u, with q, s, and u all nonzero. Then ps = qr and ru = st. 

Therefore, 

psu = qru = qst. 

Since s 6= 0, pu = qt. Consequently, p/q ∼ t/u. 

Exercises 

(1) Suppose that 

A = {x : x ∈ N and x is even}, B 

= {x : x ∈ N and x is prime}, 

C = {x : x ∈ N and x is a multiple of 5}. 

Describe each of the following sets. 

(a) A ∩ B 

(b) B ∩ C 

(c) A ∪ B 

(d) A ∩ (B ∪ C) 

(2) If A = {a,b,c}, B = {1,2,3}, C = {x}, and D = ∅, list all of the 

elements in each of the following sets. 
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(a) A × B 

(b) B × A 

(c) A × B × C 

(d) A × D 

(3) Find an example of two nonempty sets A and B for which A×B = 

B × A is true. 

(4) Prove A ∪ ∅ = A and A ∩ ∅ = ∅. 

(5) Prove A ∪ B = B ∪ A and A ∩ B = B ∩ A. 

(6) Prove A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

(7) Prove A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). 

(8) Prove A ⊂ B if and only if A ∩ B = A. 

(9) Prove (A ∩ B)0 = A0 ∪ B0. 

(10) Prove A ∪ B = (A ∩ B) ∪ (A \ B) ∪ (B \ A). 

(11) Prove (A ∪ B) × C = (A × C) ∪ (B × C). 

(12) Prove (A ∩ B) \ B = ∅. 

(13) Prove (A ∪ B) \ B = A \ B. 

(14) Prove A \ (B ∪ C) = (A \ B) ∩ (A \ C). 

(15) Prove A ∩ (B \ C) = (A ∩ B) \ (A ∩ C). 

(16) Prove (A \ B) ∪ (B \ A) = (A ∪ B) \ (A ∩ B). 

(17) Which of the following relations f : Q → Q define a mapping? In each 

case, supply a reason why f is or is not a mapping. 

 

(18) Determine which of the following functions are one-to-one and which are 

onto. If the function is not onto, determine its range. 

(a) f : R → R defined by f(x) = ex 

(b) f : Z → Z defined by f(n) = n2 + 3 

(c) f : R → R defined by f(x) = sinx 

(d) f : Z → Z defined by f(x) = x2 
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(19) Let f : A → B and g : B → C be invertible mappings; that is, mappings 

such that f−1 and g−1 exist. Show that (g ◦ f)−1 = 

f−1 ◦ g−1. 

(20) (a) Define a function f : N → N that is one-to-one but not onto. (b) Define 

a function f : N → N that is onto but not one-to-one. 

(a) If f and g are both one-to-one functions, show that g ◦ f is 

one-to-one. 

(b) If g ◦ f is onto, show that g is onto. 

(c) If g ◦ f is one-to-one, show that f is one-to-one. 

(d) If g ◦f is one-to-one and f is onto, show that g is one-to-one. 

(e) If g ◦ f is onto and g is one-to-one, show that f is onto. 

(21) Define a function on the real numbers by 

. 

What are the domain and range of f? What is the inverse of f? 

Compute f ◦ f−1 and f−1 ◦ f. 

(22) Let f : X → Y be a map with A1,A2 ⊂ X and B1,B2 ⊂ Y . 

(a) Prove f(A1 ∪ A2) = f(A1) ∪ f(A2). 

(b) Prove f(A1 ∩A2) ⊂ f(A1)∩f(A2). Give an example in which 

equality fails. 

(c) Prove f−1(B1 ∪ B2) = f−1(B1) ∪ f−1(B2), where f−1(B) = {x ∈ X : f(x) ∈ B}. 

(d) Prove f−1(B1 ∩ B2) = f−1(B1) ∩ f−1(B2). 

(e) Prove f−1(Y \ B1) = X \ f−1(B1). 

 

Unit Summary 

In this unit, you have covered the following 

i) Set theory 

ii)  Cartesian product and mapping 

iii) Equivalence relations functions 
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You were also required to solve some problems. You may be able to 

weigh your understanding of the module by grading your scores as 

follows: 25% (try to revisit all exercises, so as to boost your 

understanding); 50% (focus more on the areas that seemed a little bit 

tough); 75-100% (keep up the good work, however, don’t forget to refresh 

your knowledge by coming back to the exercises now and again).   
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UNIT 3 POLYNOMIALS AND RATIONAL 

FUNCTIONS 

Welcome to the Unit 3, in which you are going to learn more about 

polynomials and rational functions. You are going learn that rational 

function is a function that can be written as a ration of two polynomials, 

P(x) and Q(x). Therefore, for you to feel for this function, you are going 

to use graphs. 

UNIT OBJECTIVES 

By the end of this unit learners should be able to 

a)Describe quadratic function and models 

b)Understand polynomial functions and their graphs 

c)Divide polynomials 

                                                                d) Describe rational function 

Definition 3.1. A polynomial function is a function defined by a 

polynomial expression. A polynomial function of degree n is a function of 

the form 

P(x) = anx
n + an−1x

n−1 + ··· + a1x + a0. 

Polynomial functions of degree 0 and 1 are functions of the form P(x) = a0 

and P(x) = a1x + a0, respectively. These functions are linear. As the 

degree of a polynomial function increases, the shape of its graph 

changes. 

3.1. Quadratic Functions and Models 

Definition 3.2. A quadratic function is a polynomial function of degree 2 

and is of the form 

P(x) = ax2 + bx + c. 

A quadratic function can be expressed in standard form 
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f(x) = a(x − h)2 + k 

by completing the square. 

If we take a = 1 and b = c = 0, then f(x) = x2, whose graph is a parabola. 

So any graph of a quadratic function is a parabola and can be obtained 

from the graph of f(x) = x2 by transformations. 

Let f(x) = ax2 + bx + c whose standard form is f(x) = a(x − h)2 + k. The 

graph of f is a parabola with vertex (h,k). The parabola opens upward or 

is cupped up if a > 0 and opens down or cupped down if a < 0. 

Example 3.1. Let f(x) = 2x2 − 12x + 23. 

 

Figure 3.1. 

(a) Express f in standard form. 

Solution: 

We need to complete the square: 

f(x) = 2x2 − 12x + 23 

= 2(x2 − 6x) + 23 

= 2(x2 − 6x + 9) + 23 − 2(9) 

= 2(x − 3)2 + 5 

(a) Sketch the graph of f. 

Solution: 

We have to follow the steps below to sketch the graph of f. 
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– Take the parabola y = x2. 

– Shift it to the right 3 units. 

– Stretch it by a factor of 2. 

– Move it upward 5 units. 

What we get is the following: 

 

Figure 3.2. 

Let’s look at another example. 

Example 3.2. Sketch the graph of f(x) = −x2 + 6x − 8 and identify the 

vertex and x- intercepts. 

Solution: 

To identify the vertex, we need to complete the square. 

f(x) = −x2 + 6x − 8 

= −1(x2 − 6x) − 8 

= −1(x2 − 6x + 9) − 8 − (−1)(9) 

= −1(x − 3)2 + 1 

The vertex is (3,1). Since a < 0, the parabola opens downward. The 

xintercepts are found by equating f(x) to zero. 
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−x2 + 6x − 8 = 0 

−(x − 2)(x − 4) = 0 

x − 2 = 0 =⇒ x = 2 x − 

4 = 0 =⇒ x = 4 

So the x-intercepts are (2,0) and (4,0). The graph is shown in the figure 

below: 

 

Figure 3.3. 

Activity 3.1. A quadratic function is given. (a) Express the quadratic 

function in standard form. (b) Find its vertex and its x- and y-intercept(s). 

(c) Sketch its graph. 

(1) f(x) = x2 − 6x 

(2) f(x) = −x2 + 6x + 4 

(3) f(x) = −3x2 + 6x − 2 

(4) f(x) = 6x2 + 12x − 5 

3.1.1. Maximum and Minimum Values of Quadratic Functions. 

Definition 3.3. Let f be a quadratic function with standard form f(x) = a(x 

− h)2 + k. The maximum or minimum value of f occurs at x = h. If a > 0, 
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f(h) = k is the minimum value of f. If a < 0, f(h) = k is the maximum value 

of f. 

 

Figure 3.4. 

The following example is about the minimum value of a function. 

Example 3.3. Let f(x) = 5x2 − 30x + 49. 

(a) Express f in standard form. 

Solution: 

f(x) = 5x2 − 30x + 49 

= 5(x2 − 6x) + 49 

= 5(x2 − 6x + 9) + 49 − 5(9) 

= 5(x − 3)2 + 4 

(b) Sketch the graph of f. 

Solution: 

– Take the parabola y = x2. 

– Shift it to the right 3 units. 

– Stretch it by a factor of 5. 
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Figure 3.5. 

– Move it upward 4 units. 

(c) Find the minimum value of f. 

Solution: 

Since the coefficient of x2 is positive, f has a minimum value. The 

minimum value is f(3) = 4. 

We give another example for a maximum value of a function. 

Example 3.4. Let f(x) = −x2 + x + 2. 

(a) Express f in standard form. Solution: 

f(x) = −x2 + x + 2 = 

−1(x2 − x) + 2 

 

(b) Sketch the graph of f. 
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Solution: 

Since a < 0, the graph opens downward. To sketch the graph, 

we follow the steps below: 

– Take the graph y = x2. 

– Shift to the right  units. 

– Stretch by a factor of 1. 

– Move up  units. 

– We find the intercepts. It is clear that the y-intercept is f(0) = 

2. The x-intercepts are are found by setting f(x) = 0. Thus, 

−x2 + x + 2 = 0 

x2 − x − 2 = 0 (x − 

2)(x − 1) = 0 

So the x-intercepts are x = 2 and x = 1. 

 

Figure 3.6. 

(c) Find the maximum value of f. 

Solution: 

The maximum value of . 
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If we are interested in just finding the minimum or maximum value, there 

is a formula for that and it is obtained by completing the square the 

function f(x) = ax2 + bx + c. Thus, 

 

So,  and . 

Hence, the maximum or the minimum value of a quadratic function occurs 

at 

. 

Example 3.5. Find the maximum or minimum value of each function. 

(a) f(x) = x2 + 4x. 

Solution: 

All we need are values of a and b as in f(x) = ax2 + bx + c. So, a 

= 1 and b = 4. Since a > 0, the function has a minimum value. 

Then the minimum value of f occurs at 

. 

Hence, the minimum value of f is f(−2) = (−2)2 + 4(−2) = 

−4. 

(b) f(x) = −2x2 + 4x − 5. 

Solution: 

We have a = −2 and b = 4. Since a < 0, f has a maximum value 

at 
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. 

Hence, the maximum value is f(1) = −2(1)2 + 4(1) − 5 = −3. 

Activity 3.2. A quadratic function is given. (a) Express the quadratic 

function in standard form. (b) Sketch its graph. (c) Find its maximum or 

minimum value. 

 

3.1.2. Modelling with Quadratic Functions. We study some 

examples of real-world phenomena that are modelled by quadratic 

functions. 

Example 3.6. Most cars get their best gas mileage when traveling at a 

relatively modest speed. The gas mileage M for a certain new car is 

modelled by the function 

 

where s is the speed in mi/h and M is measured in mi/gal. What is the 

car’s best gas mileage, and at what speed is it attained? 

Solution: 

What we need is the maximum value of M. We have  and b = 3. 

The maximum value of the function M occurs at 

. 

The maximum value of the function is 

. 

Therefore, the car’s best mileage is 32 mi/gal when it is travelling at 42 

mi/h. 
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Activity 3.3. (1) If a ball is thrown directly upward with a velocity of 40 

ft/s, its height (in feet) after t seconds is given by y = 40t−16t2. 

What is the maximum height attained by the ball? 

(2) A manufacturer finds that the revenue generated by selling x 

units of a certain commodity is given by the function R(x) = 80x 

− 0.4x2, where the revenue R(x) is measured in dollars. What is 

the maximum revenue, and how many units should be 

manufactured to obtain this maximum? 

(3) The effectiveness of a television commercial depends on how 

many times a viewer watches it. After some experiments an 

advertising agency found that if the effectiveness E is measured 

on a scale of 

0 to 10, then 

 

where n is the number of times a viewer watches a given 

commercial. For a commercial to have maximum effectiveness, 

how many times should a viewer watch it? 

(4) A community bird-watching society makes and sells simple bird 

feeders to raise money for its conservation activities. The 

materials for each feeder cost $6, and the society sells an 

average of 20 per week at a price of $10 each. The society has 

been considering raising the price, so it conducts a survey and 

finds that for every dollar increase, it loses 2 sales per week. 

(a) Find a function that models weekly profit in terms of price per 

feeder. 

(b) What price should the society charge for each feeder to 

maximize profits? What is the maximum weekly profit? 
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3.2. Polynomial Functions and their Graphs 

We know that a polynomial function of degree n is a function of the form 

P(x) = anx
n + an−1x

n−1 + ··· + a1x + a0 

where n is a non-negative integer and an 6= 0. 

The numbers a0,a1,a2,...,an are called coefficients of the polynomial. In 

the polynomial, a0 is known as the constant coefficient or constant 

term, an is known as the leading coefficient and anx
n is known as the 

leading term. 

 

Figure 3.7. 

Example 3.7. 

If a polynomial consists of a single term, it is known as a monomial. 

Examples are f(x) = x3, f(x) = x5. In general, any polynomial of the form 

f(x) = axn where a and n are integers is a monomial. 

3.2.1. Graphing Basic Polynomial Functions. We know that graphs 

of polynomials of degree 0 and 1 are lines and those of degree 2 are 

parabolas. The greater the degree of a polynomial, the more complicated 

its graph can be. However, the graph of a polynomial function is 

continuous. The graph has no breaks or holes. It is a smooth curve. 

Check the figure below: 
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Figure 3.8. 

The simplest polynomial functions are the monomials P(x) = xn. Some of 

their graphs are shown in the figure below: 

 

Figure 3.9. 

As the figure shows, when n is even, the shape of the graph is similar to 

the shape of the graph of f(x) = x2, and when n is odd, the shape of the 

graph is similar to the shape of f(x) = x3. 

The following are examples of some graphs of polynomials with degree 

greater than 2. 

Example 3.8. Sketch the graphs of the following functions: 

(a) P(x) = −x3, 

Solution: 
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The graph of P(x) = −x3 is just the reflection of the graph of y = x3 

in the x-axis. 

 

Figure 3.10. 

(b) Q(x) = (x − 2)4, 

Solution: 

This is just the graph of y = x4 shifted to the right 2 units. 

(c) R(x) = −2x5 + 4. 

Solution: 

We start with the graph of y = x5. The negative in the first term of 

R(x) = −2x5 +4 means we reflect the graph of y = x5 on the xaxis, 

the 2 in that first term means we stretch the graph vertically 2 

units, and lastly, the +4 means we shift the graph 4 units 

upwards. 

See the figure below. 
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Figure 3.11. 

Activity 3.4. Sketch the graphs of the following functions. 

(1) P(x) = x2 − 4 

(2) Q(x) = (x − 4)2 

(3) P(x) = x4 − 16 

(4) Q(x) = −2(X + 2)4 

3.2.2. End-Behaviour of the Leading Term. The end-behaviour is 

just the description of what happens as x becomes large in the positive or 

negative direction, i.e., 

• x → ∞ means ”x becomes large in the positive direction, 

• x → ∞ means ”x becomes large in the negative direction. 

Example 3.9. Look at the function y = x2. No matter the direction that the 

value of x gets large, the value of y is always positive. Thus as x → ∞, 

y → ∞ and as x → −∞, y → ∞. 

The end-behaviour is determined by the term that contains the highest 

power of x because when x is large, the other terms are relatively 

insignificant in size. Below are the four possible types of end-behaviours: 
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Figure 3.12. End-behaviour possible types 

Example 3.10. Determine the end-behaviour of the following polynomials: 

(a) P(x) = −2x4 + 5x3 + 4x − 7, 

Solution: 

P has degree 4 and leading coefficient −2. Thus, P has even 

degree 

 and negative leading coefficient. So, y → −∞ as x → ∞ and 

y → −∞ as x → −∞. 

 

Figure 3.13. 

(b) P(x) = 3x5 − 5x3 + 2x, 

Solution: 

The leading coefficient is positive and the leading term has an 

odd 
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degree 5. Then the end behaviour of the function is: y → ∞ as 

x → ∞ and y → −∞ as x → −∞. 

Activity 3.5. Determine the end behaviour of the following functions. 

(1) P(x) = 3x3 − x2 + 5x + 1 

(2) Q(x) = x4 − 7x2 + 5x + 5 

(3) P(x) = −x5 + 2x2 + x 

(4) Q(x) = x11 − x9 

3.2.3. Using Zeros to Graph Polynomials. If P is a polynomial, then 

c is called a zero if P(c) = 0. In other words, zeros of a polynomial are 

solutions to the equation P(x) = 0. These zeros are the x-intercepts of the 

polynomial. 

Example 3.11 (Real Zeros of a Polynomial). If P is a polynomial and c is 

a real number, then the following are equivalent: 

1. c is a zero of P; 

• x = c is a solution of the equation P(x) = 0; 

• x − c is a factor of P(x); 

• c is an x-intercept of the graph of P. 

Theorem 3.1 (Intermediate Value Theorem for Polynomials). If P is a 

polynomial function and P(a) and P(b) have opposite signs, then there 

exists at least one value c between a and b for which P(c) = 0. 

The following are the guidelines for graphing polynomial functions: 
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Figure 3.14. 

Example 3.12. Sketch the graph of the polynomial function 

P(x) = (x + 2)(x − 1)(x − 3). 

Solution: 

• The zeros are −2, 1 and 3. 

• These zeros provide the intervals (−∞,−2), (−2,1), (1,3) and (3,∞). 

• It is clear that P(x) has odd degree. Thus, the end behaviour is that 

y → ∞ as x → ∞ and y → −∞ as x → −∞. 

• We get test points in these intervals to get information in the sign diagram 

below. 
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Figure 3.15. 

Plotting a few additional points and connecting them with a 

smooth curve helps us to complete the graph as below. 

 

Figure 3.16. 

Example 3.13. Let P(x) = x3 − 2x2 − 3x. 

(a) Find zeros of P. 

Solution: 

We need to factor P(x) completely. 

P(x) = x3 − 2x2 − 3x 

= x(x2 − 2x − 3) 

= x(x − 3)(x + 1) 

So the zeros are x = 0, x = 3 and x = −1. 

(b) Sketch the graph of P. 

Solution: 

From the zeros, we come up with the following intervals: 

(−∞,−1), (−1,0), (0,3) and (3,∞). Since P has odd degree, the 

end behavior 

is as follows: y → ∞ as x → ∞ and y → −∞ as x → −∞. With 

plotting a few more points and connecting them by a smooth 

curve, we get the following graph: 
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Figure 3.17. 

Activity 3.6. Sketch the graph of the polynomial function. Make sure your 

graph shows all intercepts and exhibits the proper end behaviour. 

 

3.2.4. Shape of the Graph Near a Zero. If c is a zero of P and the 

corresponding factor x−c occurs exactly m times in the factorisation of P, 

then c has multiplicity m. For example, for P(x) = x4(x − 2)3(x + 1)2, x = 2 

has multiplicity 3 and x = −1 has multiplicity 2. 

Near x = c, the graph has the same general shape as the graph of y = 

A(x−c)m. If c is a zero of P of multiplicity m, then the shape of the graph of 

P near C is as follows: 
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Figure 3.18. 

Example 3.14. Graph the polynomial P(x) = x4(x − 2)3(x + 1)2. 

Solution: 

• The zeros are −1, 0 and 2 with multiplicity 2, 4 and 3. 

• 2 has odd multiplicity, so the graph crosses the x-axis at 2. But 0 and −1 

have even multiplicity so the graph does not cross the x-axis at 0 and −1. 

• P has odd degree 9 and has positive leading coefficient. So the end 

behaviour is: y → ∞ as x → ∞ and y → −∞ as x → −∞ 

• The graph is as follows 

Activity 3.7. Graph the following polynomials functions. 

(1) P(x) = x3 + 2x2 − 8x 

(2) P(x) = x4 − 3x3 + 2x2 

(3) P(x) = x5 − 9x3 

(4) P(x) = 2x3 − x2 − 18x + 9 

3.2.5. Local Maxima and Minima of Polynomials. Let f be a 

polynomial function and (a,f(a)) be the highest point on the graph of f 
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within some viewing rectangle, then f(a) is a local maximum value of f 

and (a,f(a)) is a local maximum point. 

 

Figure 3.19. 

If (a,f(a)) is the lowest point on the graph of f, then f(a) is the local 

minimum value of f and (a,f(a)) is a local minimum point of f. 

 

Figure 3.20. 

Local Extrema of Polynomials 

If P(x) = anx
n +an−1x

n−1 +···+a1x+a0 is a polynomial of degree n, then the 

graph of P has at most n − 1 local extrema. 
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Example 3.15. Determine how many local extrema each polynomial has. 

(a) P(x) = x4 + x3 − 16x2 − 4x + 48 

Solution: 

P has two local minimum points and one local maximum point 

making it a total of 3 local extrema. 

 

Figure 3.21. 

(b) Q(x) = x5 + 3x4 − 5x3 − 15x2 + 4x − 15 

Solution: 

Q has two local minimum points and two local maximum points 

making it a total of 4 local extrema. 

(c) R(x) = 7x4 + 3x2 − 10x 

Solution: 

R has one local extrema, a local minimum point. 

Activity 3.8. Graph the following polynomial functions and find all local 

extrema. 

(1) y = x3 − x2 − x 

(2) y = x4 − 5x2 + 4 

(3) P(x) = (x − 1)(x − 3)(x − 4) 
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Figure 3.22. 

 

Figure 3.23. 

(4) P(x) = (x − 1)(x − 3)(x − 4) + 5 

3.3. Dividing Polynomials 

Division Algorithm 

If P(x) and D(x) are polynomials, with D(x) 6= 0, then there exists unique 

polynomials Q(x) and R(x), where R(x) is either 0 or of degree less than 

the degree of D(x), such that 

P(x) = D(x) · Q(x) + R(x). 
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The polynomials P(x) and D(x) are called the dividend and divisor, 

respectively. The polynomials Q(x) and R(x) are called the quotient and 

the remainder, respectively. 

When dividing polynomials, there are two methods that are used, long 

division and synthetic division. We will mostly use synthetic division. 

3.3.1. Synthetic Division. Synthetic division is a quick method of 

dividing polynomials. This method can be used when the divisor is of the 

form x−c. Only the essential parts are written. Look at the example below: 

 

Figure 3.24. 

The process starts with writing down the coefficients as follows: 

 

Figure 3.25. 

We then bring down the 2 and multiply it with 3, i.e., 2 · 3 = 6. We then 

write 6 below −7 and add getting −1. 
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Figure 3.26. 

We then multiply 3 with −1, i.e., 3·−1 = −3 and write it below 0. We then 

add getting −3. We do the same for the last column. 

 

Figure 3.27. 

Activity 3.9. Two polynomials P(x) and D(x) are given. Use either 

synthetic or long division to divide P(x) by D(x). 

(1) P(x) = 3x2 + 5x − 4, D(x) = x + 3 

(2) P(x) = 2x3 − 3x2 − 2x, D(x) = 2x − 3 

(3) P(x) = x4 − x3 + 4x + 2, D(x) = x2 + 3 (4) P(x) = 2x5 + 4x4 − 4x3 − x − 

3, D(x) = x2 − 2 

3.3.2. Remainder and Factor Theorem. 

Theorem 3.2 (Remainder Theorem). If a polynomial P(x) is divided by x − 

c, then the remainder is the value P(c). 

Example 3.16. Let P(x) = 3x5 + 5x4 − 4x3 + 7x + 3. 

• Find the quotient and remainder when P is divided by x + 2. 

Solution: 

We use synthetic division as follows 
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Figure 3.28. 

So the quotient is Q(x) = 3x4 − x3 − 2x2 + 4x − 1 and the 

remainder is 5. 

• Use the Remainder Theorem to find P(−2). 

Solution: 

By the Remainder Theorem, P(−2) is the remainder when P(x) is 

divided by x − (−2) = x + 2. Thus, the remainder is P(−2) = 5. 

Theorem 3.3 (Factor Theorem). c is a zero of P if and only if x − c is a 

factor of P(x). 

Example 3.17. Let P(x) = x3 − 7x + 6. Show that P(1) = 0 and use this 

fact to factor P(x) completely. 

Solution: 

We have that 

P(1) = (1)3 − 7(1) + 6 = 0. 

So x − 1 is a factor of P(x). We then use synthetic division as follows 

 

Figure 3.29. 

So the quotient is Q(x) = x2 + x − 6. Then 
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P(x) = (x − 1)(x2 + x − 6) 

= (x − 1)(x − 2)(x + 3) 

Example 3.18. Find a polynomial of degree 4 that has zeros −3,0,1 and 

5. 

Solution: 

By Factor Theorem, x + 3, x − 0, x − 1 and x − 5 are factors. Then 

P(x) = (x − 0)(x + 3)(x − 1)(x − 5) 

= x4 + 3x3 − 13x2 + 15x 

Activity 3.10. (1) Use synthetic division and the Remainder Theorem to 

evaluate P(c). 

(a) P(x) = 4x2 + 12x + 5, c = −1 

(b) P(x) = x7 − 3x2 − 1, c = 3 

(2) Find a polynomial of degree 3 that has zeros 1, −2, and 3 and in 

which the coefficient of x2 is 3. 

(3) Find a polynomial of degree 4 that has integer coefficients and 

zeros 1,−1,2, and . 

3.3.3. Real zeros of Polynomials. 

Theorem 3.4 (Real Zeros Theorem). If the polynomial P(x) = anx
n + 

an−1x
n−1 + ...a1x + a0 has integer coefficients, then every rational zero of P 

is of the form p/q, where p is a factor of the constant coefficient a0 and q is 

a factor of the leading coefficient of an. 

Finding the Rational Zeros of a Polynomial 

1. List all possible zeros. List all possible rational zeros, using the 

Rational Zeros Theorem. 
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2. Divide. Use synthetic division to evaluate the polynomial at each 

of the candidates for the rational zeros that you found in Step 1. 

When the remainder is 0, note the quotient you have obtained. 

3. Repeat. Repeat Steps 1 and 2 for the quotient. Stop when you 

reach a quotient that is quadratic or factors easily, and use the 

quadratic formula or factor to find the remaining zeros. 

Activity 3.11. Find all rational zeros of the polynomial, and write the 

polynomial in factored form. 

(1) P(x) = x3 + 3x2 − 4 

(2) P(x) = x3 − 6x2 + 12x − 8 

(3) P(x) = x3 − 4x2 − 7x + 10 

(4) P(x) = x4 − 5x2 + 4 

(5) P(x) = 4x3 − 7x + 3 

(6) P(x) = 4x4 − 25x2 + 36 

(7) P(x) = 6x3 + 11x2 − 3x − 2 

(8) P(x) = x5 + 3x4 − 9x3 − 31x2 + 36 

3.4. Rational Functions 

Definition 3.4. A Rational Function is a 

function of the form 

 

where P and Q are polynomials. We assume P(x) and Q(x) have no 

factor in common. 

When graphing rational functions, we pay attention to the behavior of the 

graph near the x-values. 
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Example 3.19. Graph the rational function f(x) = X
1 , and state the domain 

and range. 

Solution: 

The function  is not defined for x = 0. We come up with table of 

values for values of x closer to x = 0 from the negative side and from the 

positive side. 

 

Figure 3.30. 

We also show how f(x) changes as |x| becomes large. 

 

Figure 3.31. 

So f(x) → 0 as x → −∞ and f(x) → 0 as x → −∞. The following is a table of 

values for . 

 

Figure 3.32. 
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Figure 3.33. 

The behavior explained in the example above has the following meaning: 

 

Figure 3.34. 

The line x = 0 in the above example is called a vertical asymptote and 

the line y = 0 is a horizontal asymptote. 

3.4.1. Transformations of . A rational function of the form 
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Figure 3.35. 

can be graphed by shifting, stretching and/or reflecting the graph of f(x) = 

. These functions are known as fractional transformations. 

Example 3.20. Graph the following functions: 

 

Solution: 

We can express r(x) in terms of  

 

 So we shift the graph of 3 units to the right and 

stretch vertically by a factor of 2. 

The domain of r(x) is {x|x 6= 3} since the function r(x) is 

defined for all x other than 3. The range of r(x) is {y|y 6= 0} 

 

Solution: 

Let . Using long division, we get . So 

s(x) = 3 − f(x + 2). 
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Figure 3.36. 

We therefore reflect the graph of f(x) on the x-axis. We also 

shift it to the left 2 units and shift it upwards 3 units. 

 

Figure 3.37. 

Activity 3.12. Use transformations of the graph of  to graph the 

rational function. 

 



94 

 

Figure 3.38. 

3.4.2. Asymptotes of Rational Functions. 

Example 3.21. Find the vertical and horizontal asymptotes of 

. 

Solution: 

Factor the denominator: 

2x2 + 3x − 2 = (2x − 1)(x + 2). 

Thus,  or x = −2. So the vertical asymptotes are the lines  and x 

= −2. 

To find the horizontal asymptotes, we look at the degrees of the 

numerator and denominator and compare them according to the 

conditions mentioned earlier. Thus we find that the degrees of the 

numerator and the denominator are the same. Then the horizontal 

asymptote is the line , i.e., 

 leading coefficient of numerator 3 

= 

 leading coefficient of denominator 2 

If we graph the function using a graphing device, we get 
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Figure 3.39. 

Activity 3.13. Find all horizontal and vertical asymptotes (if any). 

 

3.4.3. Graphing Rational Functions. The guidelines for sketching 

the graphs of rational functions are outlined below: 

 

Figure 3.40. 

Example 3.22. Graph , and state the domain and range. 
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Solution: 

Factor: We factor the numerator and denominator. 

. 

x-intercepts: The x intercepts are the zeros of the numerator,  and 

x = −4. 

y-intercepts: We substitute x = 0 in r(x) to find the y-intercept: 

. 

Vertical asymptotes: These occur where the denominator is 0. So the 

vertical asymptotes are the zeros of the denominator, x = 1 and x = −2. 

Behavior near vertical asymptotes: We need to determine the behavior of 

the function towards each asymptote. To do that, we use test values. The 

following table shows whether y → ∞ or y → −∞ from each side of the 

vertical asymptotes. 

 

Figure 3.41. 

Horizontal asymptote: We look at the degrees of the numerator and 

denominator. The degrees of the numerator and denominator are the 

same. 

So, the horizontal asymptote is 

 leading coefficient of numerator 2 

 = = 2 

 leading coefficient of denominator 1 

Thus, the horizontal asymptote is the line y = 2. 

Graph: With some additional information as in the table below, And then 
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Figure 3.42. 

we plot the graph: 

Activity 3.14. Find the intercepts and asymptotes, and then sketch a 

graph of the rational function and state the domain and range. 

 

 

Figure 3.43. 

3.4.4. Slant Asymptotes and End Behavior. For a rational function 

r(x) = P(x)/Q(x), in which the degree of the numerator is one more than 

the degree of the denominator, we use the Division Algorithm to express 

r(x) in the form 
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where the degree of R(x) is less than the degree of Q(x). It means as x → 

±∞, R(x)/Q(x) → 0. This means for large values of |x| the graph of r(x) 

approaches the graph of the line y = ax + b. 

The line y = ax+b is known as a slant asymptote or oblique asymptote. 

Example 3.23. Graph the rational function . 

Solution: 

Factor: 

. 

x-intercepts: 

−1and5. 

y-intercepts: 

. 

Horizontal asymptote: There is no horizontal asymptote since the degree 

of the numerator is greater than the degree of the denominator. 

Vertical asymptote: 

x = 3 

Behavior near vertical asymptote: y → ∞ as x → 3− and y → −∞ as x → 

3+. 

Slant asymptote: Using long division, Then 
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Figure 3.44. 

. 

Thus, the slant asymptote is y = x − 1. 

Graph: With a few additional data points as below 

 

Figure 3.45. 

we then plot the graph: 
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Figure 3.46. 

Activity 3.15. Find the slant asymptote, the vertical asymptotes, and 

sketch a graph of the function. 

 
 

 

Unit Summary 

In this unit you have the following 

a)Quadratic functions and models 

b)Polynomial functions and their graphs 

c)Dividing polynomials 

d)Rational functions 

You were also required to solve some problems. You may be able to 

weigh your understanding of the module by grading your scores as 

follows: 25% (try to revisit all exercises, so as to boost your 

understanding); 50% (focus more on the areas that seemed a little 

bit tough); 75-100% (keep up the good work, however, don’t forget 

to refresh your knowledge by coming back to the exercises now and 

again).  

 

 

UNIT 4 EXPONENTIAL AND LOGARITHMIC 

FUNCTIONS 

 

Welcome to the Unit 4, in which you are going to learn more about 

exponential and logarithmic functions. You are going learn that 

exponential functions are functions where the independent variable is in 

the exponent and that the inverse function  of the exponential function is 

called the logarithm function with base a and is denoted by loga. 

UNIT OBJECTIVES 
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By the end of this unit learners should be able to 

(d) Define exponential functions 

(e) Graph and transform exponential functions 

(f) Calculate compound interests 

(g) Define logarithmic functions and their properties 

(h) Graph and transform logarithmic functions 

(i) Define the natural logarithmic function and its properties 

(j) State the Laws of logarithms 

(k) Explain  the change of bases 

h)Solve exponential and logarithmic equations and inequalities 

 

Exponential Functions are functions where the independent variable is 

in the exponent, e.g., f(x) = 2x. These are used for modeling many real 

world phenomena such as growth of a population. They can be used to 

predict population size at any given time. To find out when a population 

will reach a certain level, we use the inverse functions of exponential 

functions called logarithmic functions. 

4.1. Exponential Functions 

Definition 4.1. The exponential function with base a is defined for all real 

numbers x by 

f(x) = ax 

where a > 0 and a 6= 1. 

We assume a 6= 1 because f(x) = 1x = 1 is just a constant function. 

Example 4.1. Let f(x) = 3x, and evaluate the following: 

(a) f(2), Solution: f(2) = 

32 = 9. 
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(b) f(−2/3). Solution: 

f(−2/3) = 3−2/3 ≈ 

0.4807. 

Activity 4.1. Use a calculator to evaluate the function at the indicated 

values. Round your answers to three decimals. 

. 

4.1.1. Graphs of Exponential Functions. The exponential function 

 f(x) = ax (a > 0,a 6= 1) 

has domain R˚ and range (0,∞). The line y = 0 (the x-axis) is a horizontal 

asymptote of f. The graph of f has one of the following shapes: 

 

Figure 4.1. 

Example 4.2. Find the exponential function f(x) = ax whose graph is 

given. 
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Figure 4.2. 

Solution: 

(a) From the point (2,25), we get that f(2) = a2 = 25. Then base a = 5. 

So f(x) = 5x. 

(b) From the point (3,1/8), we also get that . Then 

base . So . 

Activity 4.2. Sketch the graph of the function by making a table of values. 

Use a calculator if necessary. 

 

4.1.2. Transformations of Exponential Functions. 

4.1.2.1. Functions of the form f(x) = −ax and g(x) = a−x. To graph the 

function f(x) = −ax, start with the graph of y = ax and reflect it on 

the x-axis. 

Example 4.3. Graph the function h(x) = −2x. 

Solution: 

Start with the graph of f(x) = 2x and reflect it on the x-axis to get the graph 

of h(x) = −2x. 



104 

 

Figure 4.3. 

To graph the function g(x) = a−x, start with the graph of y = ax and reflect it 

on the y-axis. 

Example 4.4. Graph the function g(x) = 2−x. 

Solution: 

Start with the graph of f(x) = 2x and reflect it on the y-axis to get the graph 

of g(x) = 2−x. 

 

Figure 4.4. 
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4.1.2.2. Graphs of functions of the form f(x) = b + ax. To graph these 

functions, we need to start with the graph of y = ax and shift it b units 

upwards if b > 0 or shift it b units downwards if b < 0. 

Example 4.5. Sketch the graph of f(x) = 1 + 2x. 

Solution: 

Start with the graph of y = 2x and shift it 1 unit upward to get the graph of 

f(x) = 1 + 2x. 

 

Figure 4.5. 

4.1.2.3. Graphs of functions of the form f(x) = ax+b. To graph functions 

of this form, we start with the graph of y = ax and shift it b units left if b > 0 

or shift it b units right if b < 0. 

Example 4.6. Sketch the graph of k(x) = 2x−1. 

Solution: 

Start with the graph of y = 2x, shift it to the right 1 unit to get the graph of 

k(x) = 2x−1. 
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Activity 4.3. Graph the following functions. State the domain, range and 

asymptote. 

 

Figure 4.6. 

 

(d) y = 2x−4 + 1 

4.1.3. Compound Interest. 

Definition 4.2. Compound Interest is calculated by the formula 

 

where A(t) is the amount after t years, P is the principal, r is the interest 

rate per year, n is the number of times interest is compounded per year 

and t, the number years. 

Example 4.7. A sum of $1000 is invested at an interest rate of 12% per 

year. Find the amounts in the account after 3 years if interest is 

compounded annually, semiannually, quarterly, monthly, and daily. 

Solution: 

We use the compound interest formula 
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with P = $1000, r = 0.12, and t = 3. 

 

Figure 4.7. 

Activity 4.4. 1. Sketch the graphs of the following functions and explain 

the relationship between them. 

(a) f(x) = 2x and g(x) = 3(2x); 

(b) f(x) = 9x/2 and g(x) = 3x. 

2. If $10,000 is invested at an interest rate of 3% per year, 

compounded semiannually, find the value of the investment after 

the 

 given number of years. (a) 5 years (b) 10 years (c) 15 

years. 

4.2. The Natural Exponential Function 

The natural exponential function is similar to the other exponential 

functions except for the base. It uses a number e as the base. 

Definition 4.3. The number e is defined as the value that  ap- 

proaches as n becomes large. 
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The table below shows the value that approaches for increasingly 

large values of n. 

In particular, e ≈ 2.71828182845904523536. 

Definition 4.4. The Natural Exponential Function is the function f(x) = ex 

with base e. It is often referred to as just the exponential function. 

 

Figure 4.8. 

Since 2 < e < 3, the graph of f(x) = ex lies between the graphs of y = 2x 

and y = 3x. 

 

Figure 4.9. 

The natural exponential function can be evaluated using a calculator. 
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Example 4.8. Evaluate each expression rounded to 5 decimal places: 

(a) e3 ≈ 20.08554. 

(b) 2e−0.53 ≈ 1.17721. 

(c) e4.8 ≈ 121.51042. 

Activity 4.5. Use a calculator to evaluate the function at the indicated 

values. Round your answers to three decimals. 

(a) f(x) = ex; f(3),f(0.23),f(1),f(−2). 

. 

4.2.1. Transformation of Exponential Functions. The 

transformations of these functions are the same as those done on other 

exponential functions as explained earlier in the chapter. 

Example 4.9. Sketch the graph of each function: 

(a) f(x) = e−x, 

Solution: 

We start with the graph of y = ex and reflect it on the y-axis. 

 

Figure 4.10. 

(b) f(x) = 3e0.5x, 

Solution: 
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We come up with a table of values as below. Then we plot the 

resulting points and connect them with a smooth curve. 

Activity 4.6. 1. Graph the function, not by plotting points, but by starting 

from the graph of y = ex. State the domain, range and 

asymptote. 

(a) y = 1 − ex 

(b) f(x) = e−x − 1 

(c) y = ex−3 + 4 

 

Figure 4.11. 

(d) f(x) = −ex−1 − 2 

2. Find the local maximum and minimum values of the function and 

the value of x at which each occurs. State each answer correct 

to two decimal places. 

(a) g(x) = xx 

(b) g(x) = ex + e−3x 

3. A sky diver jumps from a reasonable height above the ground. 

The air resistance she experiences is proportional to her 

velocity, and the constant of proportionality is 0.2. It can be 

shown that the downward velocity of the sky diver at time t is 

given by 

v(t) = 80(1 − e−0.2t) 
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where t is measured in seconds and v(t) is measured in ft/sec. 

(a) Find the initial velocity of the sky diver. 

(b) Find the velocity after 5 s and after 10 s. 

(c) Draw a graph of the velocity function v(t). 

(d) The maximum velocity of a falling object with wind 

resistance is called its terminal velocity. From the graph in 

part (c) find the terminal velocity of this sky diver. 

4.3. Logarithmic Functions 

Every exponential funtion f(x) = ax with a > 0 and a 6= 1 is a one-to-one 

function by the horizontal line test and therefore has an inverse function. 

The inverse function f−1 of the exponential function is called the logarithm 

function with base a and is denoted by loga. 

Definition 4.5. Let a be a positive number with a 6= 1. The logarithm 

function with base a denoted by loga is defined by 

loga x = y ⇐⇒ ay = x. 

So loga x is the exponent to which the base a must be raised to give x. 

Example 4.10. The logarithmic and exponential forms are equivalent 

equations: If one is true, then so is the other. So we can switch from one 

form to the other as in the following illustrations. 

 

Figure 4.12. 



112 

Example 4.11. Evaluate the following logarithms: 

(a) log1 01000 = 3 because 103 = 1000. 

(b) log2 32 = 5 because 25 = 32. 

With the following properties of logarithms, we will find it easier to 

understand the above examples. 

Properties of Logarithms: 

1. loga 1 = 0, 

2. loga a = 1, 

3. loga a
x = x, 

4. aloga x = x. 

Activity 4.7. (1) Evaluate the expression. 

(a) log2 32 

(b) log8 827 

(c) log49 7 

(d) 3log3 8 

(2) Use the definition of the logarithmic function to find x. 

(a) log2 x = 5 (b) 

log4 2 = x 

(c) log2 16 = x 

(d) log10 0.1 = x 

4.3.1. Graphing Logarithmic Functions. Since the exponential 

function f(x) = ax with a 6= 1 has domain R˚ and range (0,∞), its inverse 

function f−1(x) = loga x has domain (0,∞) and range R
˚
. 

The graph of f−1(x) = loga x is obtained by reflecting the graph of f(x) = ax 

in the line y = x. 
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Figure 4.13. 

Example 4.12. Sketch the graph of f(x) = log2 x. 

Solution: 

We make a table of values and choose the x values to be powers of 2 so 

we 

can find their logarithms easily. 

 

Figure 4.14. 

The following graphs are graphs of logarithmic functions with bases 2,3, 

5, and 10. 
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Figure 4.15. 

It is clear to see that these graphs are obtained by reflecting the graphs of 

y = 2x, y = 3x, y = 5x, and y = 10x in the line y = x. 

4.3.2. Transformations of Graphs of Logarithmic Functions. 

Transformations of graphs of logarithmic functions follow the same suit as 

exponential functions. 

As we will see in the following example, reflection in the x-axis happens 

when f(x) = −loga x while reflection in the y-axis happens when f(x) = 

loga(−x). 

Example 4.13. Sketch the graphs of the following functions: 

(a) g(x) = −log2 x. 

(b) h(x) = log2(−x). 

Solution: 
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Figure 4.16. 

The graph of any logarithmic function of the form f(x) = b + loga x where b 

is an integer, is just the graph of y = loga x shifted upward b units. If f(x) = 

loga(x − b), then the graph is just the graph of y = loga x shifted b units to 

the right. See the examples below. 

Example 4.14. Find the domain of each function and sketch the graph. 

(a) g(x) = 2 + log5 x. 

Solution: 

The graph of g is obtained from the graph of f(x) = log5 x by 

shifting it upwards 2 units. The domain of f is (0,∞). 

(b) h(x) = log10(x − 3). 

Solution: 

The graph of h is obtained from the graph of f(x) = log10 x by 

shifting to the right 3 units. The line x = 3 is the vertical 

asymptote. 

The domain is 

{x|x − 3 > 0} = {x|x > 3} = (3,∞) 
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Figure 4.17. 

 

Figure 4.18. 

Definition 4.6. The logarithm with base 10 is called the common 

logarithm and is denoted by omitting the base 

logx = log10 x 

Common logarithms can be evaluated using calculators. 

Activity 4.8. Graph the function. State the domain, range, and 

asymptote. 

(a) f(x) = log2(x − 4) 

(b) y = 1 − logx 

(c) y = 2 + log3 x 
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(d) y = log3(x − 1) − 2 

4.4. The Natural Logarithm Function 

Definition 4.7. The logarithm with base e is called the natural logarithm 

and is denoted by ln. 

lnx = loge x. 

So lnx = y ⇐⇒ ey = x. 

Properties of Natural Logarithmic Functions 

The properties are just similar to the properties of the logarithmic function. 

1. ln1 = 0. 2. 

lne = 1. 

3. lnex = x. 

4. elnx = x. 

Example 4.15. Evaluate 

(a) lne8 = 8; 

; 

(c) ln5 ≈ 1.609. 

Example 4.16. Find the domain of the function f(x) = ln(4 − x2). 

Solution: 

{x|4 − x2 > 0} = {x|x2 < 4} 

= {x||x| < 2} 

= {x| − 2 < x < 2} 

= (−2,2) 
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Activity 4.9. Draw the graph of the function in a suitable viewing 

rectangle, and use it to find the domain, the asymptotes, and the local 

maximum and minimum values. 

(a) y = x + lnx 

 

(c) y = x(lnx)2 

(d) y = ln(x2 − x) 

4.5. Laws of Logarithms 

Let a be a positive number, with a 6= 1. Let A, B, and C be any real 

numbers with A > 0 and B > 0, 

1. loga(AB) = loga A + loga B; 

2.; 

3. 

Example 4.17. Evaluate the following: 

(a) log4 2 + log4 32 Solution: 

log4 2 + log4 32 = log4(2 × 32) 

= log4 64 

= log4 43 

= 3log4 4 

= 3 

(b) log2 80 − log2 5 Solution: 
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= log2 24 

= 4log2 2 

= 4 

 

Solution: 

 

4.5.1. Expanding and Combining Logarithmic Functions. We can 

use the Laws of Logarithms to expand or combine logarithmic expres- 

sions. 

Example 4.18 (Expanding expressions). Use the Laws of Logarithms to 

expand each expression: 

(a) log2(6x) = log2 6 + log2 x; 

; 

Example 4.19 (Combining expressions). Combine the following into a 

single logarithmic expression. 

; 

Solution: 
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; 

Solution: 

 

Activity 4.10. (1) Use the Laws of Logarithms to expand the expres- 

sion. 

(a) log2(2x) 

 

(2) Use the Laws of Logarithms to combine the expression. 

(a) log2 A + log2 B − 2log2 C 

 

 

4.5.2. Change of Base Formula. Sometimes we would want to 

change from logarithms in one base to logarithms in another base. We 

can use the following to accomplish this. 

. 

Example 4.20. Use the change of base formula and common or natural 

logarithms to evaluate each logarithm, correct to five decimal places. 

; 

. 
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Activity 4.11. Use the Change of Base Formula and a calculator to 

evaluate the logarithm, rounded to six decimal places. Use either natural 

or common logarithms. 

(a) log2 5 

(b) log5 2 

(c) log4 125 

(d) log12 2.5 

4.6. Exponential and Logarithmic Equations 

We first look at exponential equations and then we will look at logarithmic 

equations. The following are the guidelines for solving exponential equa- 

tions. 

 

Figure 4.19. 

Example 4.21. Solve 3x+2 = 7. 

Solution: 

3x+2 = 7 

log(3x+2) = log7 (x 

+ 2)log3 = log7 
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Example 4.22. Solve the equation 8e2x = 20. 

Solution: 

 

2x = ln2.5 

 

Example 4.23. Solve e2x − ex − 6 = 0. 

Solution: 

Let y = ex, then 

e2x − ex − 6 = 0 y2 

− y − 6 = 0 

(y − 3)(y + 2) = 0 

So either y = 3 or y = −2. Thus, ex = 3 =⇒ x = ln3. We do not consider 

the second case because ex > 0 for all x, so the second case gives no 

solution. 

We now look at logarithmic equations. The following are the guidelines for 

solving logarithmic equations. 
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Figure 4.20. 

Example 4.24. Solve each equation for x. 

(a) lnx = 8. Solution: 

x = e8 = 2981. 

(b) log2(25 − x) = 3. 

Solution: 

log2(25 − x) = 3 

25 − x = 23 

25 − x = 8 

x = 17 

(c) 4 + 3log(2x) = 16. 

Solution: 

4 + 3log(2x) = 16 
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(d) log(x + 2) + log(x − 1) = 1. 

Solution: 

log(x + 2) + log(x − 1) = 1 log((x 

+ 2)(x − 1)) = 1 

(x + 2)(x − 1) = 10 

x2 + x − 2 = 10 

x2 + x − 12 = 0 

(x + 4)(x − 3) = 0 

So x = −4 or x = 3. 

Activity 4.12. (1) Solve the equation. 

(a) e2x + 3ex + 2 = 0 

(b) x22x − 2x = 0 

(c) e1−4x = 2 

(d) 23x+1 = 3x−2 

(2) Solve the logarithmic equation. 

(a) log(3x + 5) = 2 

(b) log2(x2 − x − 2) = 2 
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(c) logx + log(x − 1) = log(4x) 

(d) log9(x − 5) + log9(x + 3) = 1 

4.7. Modeling with Exponential and Logarithmic 

Functions 

4.7.1. Exponential Growth. Suppose we start with a single bacterium 

which divides every hour. After one hour we have 2 bacteria, after 2 

hours 22 bacteria, after 3 hours 23. We can model the bacteria population 

after t hours by f(t) = 2t. If we start with n0 bacteria, then f(t) = n02
t. If the 

initial size of a population is n0 and the doubling time is a, then the size of 

the population at time t is 

n(t) = n02t/a 

where a and t are measured in the same time units (minutes, hours, days, 

years, and so on). 

Example 4.25. Under ideal conditions a certain bacteria population 

doubles every three hours. Initially there are 1000 bacteria in a colony. 

(a) Find a model for the bacteria population after t hours. 

Solution: 

The population at time t is modeled by 

n(t) = 1000 · 2t/3. 

(b) How many bacteria are in the colony after 15 hours? 

Solution: 

n(15) = 1000 · 215/3 = 1000 · 25 = 32000. 

(c) When will the bacteria count reach 100,000? 

Solution: 
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We need to find the time t given n(t) = 100,000. So 

 

4.7.2. Exponential Growth (Relative Growth Rate). We can 

also model the population growth with an exponential function in any 

base. 

Definition 4.8. A population that experiences exponential growth 

increases according to the model 

n(t) = n0e
rt 

where n(t) is the population at time t, n0 is the initial size of the population, 

r is the relative rate of growth expressed as a proportion of the 

population, and t the time. 

Example 4.26. The initial bacterium count in a culture is 500. A biologist 

later makes a sample count of bacteria in the culture and finds that the 

relative rate of growth is 40% per hour. 

(a) Find a function that models the number of bacteria after t hours. 

Solution: 

We have n0 = 500 and r = 0.4. Then 

n(t) = 500 · e0.4t 

where t is in hours. 

(b) What is the estimated count after 10 hours? 
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Solution: 

n(t) = 500 · e0.4t = 500 · e0.4(10) = 500 · e4 ≈ 27,300 

(c) When will the bacteria count reach 80,000? 

Solution: 

We set n(t) = 80,000 and solve for t. 

80,000 = 500 · e0.4t 

160 = e0.4t 

ln160 = 0.4t 

 

(d) Sketch the graph of n(t). 

Solution: 

 

Figure 4.21. 

4.7.3. Radioactive Decay. Radioactive substances decay by 

spontaneously omitting radiation. The rate of decay is proportional to the 

mass of the substance. Physicists express the rate of decay in terms of 

half-life (amount of time taken for the decay of half of the substance). In 
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general, for a radioactive substance with mass m0 and half-life h, the 

amount remaining at time t is modeled by 

m(t) = m02−t/h. 

If m0 is the initial mass of a radioactive substance with half-life h, then the 

mass remaining at time t is modeled by the function 

m(t) = m0e−rt 

where r = ln2
h . 

Activity 4.13. (1) A certain species of bird was introduced in a certain 

county 25 years ago. Biologists observe that the population 

doubles every 10 years, and now the population is 13,000. 

(a) What was the initial size of the bird population? 

(b) Estimate the bird population 5 years from now. 

(c) Sketch a graph of the bird population. 

(2) The population of a certain city was 112,000 in 2006, and the 

observed doubling time for the population is 18 years. 

(a) Find an exponential model n(t) = n02
t/a for the population t 

years after 2006. 

(b) Find an exponential model n(t) = n02
rt for the population t 

years after 2006. 

(c) Sketch the graph of the population at time t. 

(d) Estimate when the population will reach 500,000. 

(3) The half-life of cesium-137 is 30 years. Suppose we have a 10-g 

sample. 
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(a) Find a function m(t) = m02−t/h that models the mass 

remaining after t years. 

(b) Find a function m(t) = m02−rt that models the mass 

remaining after t years. 

(c) How much of the sample will remain after 80 years? 

(d) After how long will only 2 g of the sample remain? 

 

 

Unit Summary 

In this unit you have learned the following 

a)Definition of exponential functions 

b)Graphs and transforms exponential functions 

c)Calculated compound interests 

d)Defined logarithmic functions and their properties 

(d) Graphed and transformed logarithmic functions 

e)Defined the natural logarithmic function and its properties 

f)Stated the Laws of logarithms 

g)Explained  change of bases 

h)Solved exponential and logarithmic equations 

You were also required to solve some problems. You may be able to 

weigh your understanding of the module by grading your scores as 

follows: 25% (try to revisit all exercises, so as to boost your 

understanding); 50% (focus more on the areas that seemed a little bit 

tough); 75-100% (keep up the good work, however, don’t forget to refresh 

your knowledge by coming back to the exercises now and again).   

 



130 

UNIT 5 Trigonometry 

Unit Introduction 

Welcome to the Unit 5, in which you are going to learn more about  

angles and trigonometric functions. 

 

UNIT OBJECTIVES 

By the end of this unit learners should be able to 

i)Measure angles in degrees and radians 

ii)Define the unit circle 

iii)Define trigonometric functions 

iv)Describe right angle trigonometry 

v)Define trigonometric identities 

vi) Sketch trigonometric graphs 

5.1. Angles 

An angle is determined by rotating a ray (half-line) about its endpoint. 

The starting position of the ray is the initial side of the angle, and the 

position after rotation is the terminal side. The endpoint of the ray is the 

vertex of the angle. 

 

 

Figure 5.1. 
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Positive angles are generated by counterclockwise rotation, and negative 

angles by clockwise rotation. 

 

Figure 5.2. 

5.1.1. Radian Measure. So far, it is commonly known that angles are 

measured in degrees. We introduce another way of measuring angles in 

this section known as the radian measure. 

Suppose we have a circle with radius r and s an arc length on the circle. 

Let θ be an angle whose initial point is the x-axis and its terminal point is 

at a distance s from the x-axis. A radian is the measure of a central angle 

that intercepts an arc equal in length to the radius of the circle. See the 

circle below: 

 

Figure 5.3. 

Algebraically, 

 

where θ is measured in radians. 

Since the circumference of a circle is given by 2πr, a central angle of one 

full revolution corresponds to an arc length of 
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s = 2πr. 

Therefore, the radian measure of an angle of one full revolution is 2π. We 

can then obtain the following: 

 revolution =  radians, 

 revolution =  radians, 

 revolution =  radians. 

In the xy-coordinate system, there are four quadrants numbered I,II,III 

and IV as shown below. 

 

Figure 5.4. 

It should be noted that the angles 0,π/2,π and 3π/2 do not lie in any 

quadrant. 

Two angles are coterminal if they have the same initial and terminal 

sides. For instance, the angles 0 and 2π are coterminal. You can find an 

angle that is coterminal to θ by adding 2π if θ is positive and subtracting 

2π if θ 

is negative. 

Example: The coterminal angle to . The coterminal 

angle to . 

Two positive angles α and β are complementary if their sum is π/2, i.e., 

α + β = π/2. Two angles are supplementary if their sum is π. 
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Figure 5.5. 

Activity 5.1. Find (if possible) the complement and supplement of each 

angle. 

 

5.1.2. Conversion Between Degrees and Radians. 

(1) To convert degrees to radians, multiply degrees by . 

(2) To convert radians to degrees, multiply radians by . 

Example: 

(a.) Express 600 in radians (b.) Express  rad in degrees. 

Solution 5.1.  rad =  rad, ( b.) rad =  

300. 

Activity 5.2. (1) Rewrite each angle in radian measure as a multiple of 

(Do not use a calculator). 

(a) 300 

(b) 1500 

(c) 3150 

(d) −2400 

(2) Rewrite each angle in degree measure. (Do not use a 

calculator.) 
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5.2. The Unit Circle 

The unit circle is the circle of radius 1 centered at the origin in the 

xyplane. Its equation is 

x2 + y2 = 1. 

 

Figure 5.6. 

Suppose t is a real number. Imagine that the real number line is wrapped 

around this circle, with positive numbers corresponding to a 

counterclockwise wrapping and negative numbers corresponding to a 

clockwise wrapping as shown below: 

 

Figure 5.7. 

As the real number line is wrapped around the unit circle, each real 

number t corresponds to a point on the circle. The point obtained in this 

way is called the terminal point determined by the real number t. 
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Figure 5.8. 

The circumference of the unit circle is C = 2π. So if a point starts at (1,0) 

and moves counterclockwise all the way around the unit circle and 

returns to (1,0), it travels a distance of 2π. Check the figure below for 

instance: 

 

Figure 5.9. 

 

Let t be a real number. The reference number t associated with t is the 

shortest distance along the unit circle between the terminal point 

determined 

 

by t and the x-axis. To find the reference number t, its helpful to know the 

quadrant in which the terminal point determined by t lies. If the terminal 

point lies in quadrants I or IV, where x is positive, we find by moving 

along the circle to the positive x-axis. If it lies in quadrants II or III, where 

x is negative, we find by moving along the circle to the t negative x-axis. 
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Figure 5.10. 

Example: 

Find the reference number for each value of , ( b.) , 

. 

Solution 5.2. , 

, 

. 

In general, each real number also corresponds to a central angle whose 

radian measure is t. The following table shows some common t values 

and their corresponding terminal points. 

 

Figure 5.11. 

Activity 5.3. (1) Find the point (x,y) on the unit circle that corresponds to 

the real number t. 

 

(c) t = π 

 

(2) Find the reference number for each t in question 1 above. 

5.3. Trigonometric Functions 

Remember that for a given real number t, to find the terminal point P(x,y), 

we move along the unit circle a distance of t starting at the point (1,0). If t 
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is positive, we move counterclockwise and if t is negative, we move 

clockwise. The x and y coordinates of the terminal point P(x,y) can be 

used to define trigonometric functions. 

 sint = y cost = x  

= 0) cot  

Examples: Find the six trigonometric functions of each real number t. 

 

Solution 5.3. (a) The terminal point determined by . 

We have 

 

 , cot . 

(b) The terminal point determined by π/2 is P(0,1). So we have 

 , cot . 

Note that  and  are undefined because x = 0 appears in 

the denominator. 

The following table shows some special values of the trigonometric 

functions. 

 

Figure 5.12. 

Activity 5.4. (1) Evaluate (if possible) the six trigonometric functions of 

the real number. 

 

(b) t = 5π 
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(2) Use  to evaluate the indicated functions. 

(a) sin(−t) 

(b) csc(−t) 

(c) sin(π − t) 

(d) sin(t + π) 

 5.3.1. Domains of Trigonometric Functions. 

Function Domain 

 sin,cos All real numbers 

tan, sec All real numbers other than  for any integer n 

cot,csc All real numbers other than nπ for any integer n. 

5.3.2. Values of Trigonometric Functions. When computing the 

values of trigonometric functions, we first determine their signs. The sign 

of a trigonometric function is determined by the quadrant in which the 

terminal point of t lies. The following device becomes useful to remember 

the sign of any trigonometric function in any quadrant. 

 

Figure 5.13. 

In the first quadrant, all trigonometric functions are positive. In the 

second, only sine is positive. In the third, only tangent is positive and in 

the fourth, only cosine is positive. It should be noted that where sin is 

positive, then csc is also positive since they are just reciprocals of each 

other. The same applies to tan and cot, and to cos and sec. 
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Example: Find each value: 

 

Solution 5.4. (a) Since the terminal point for  is in quadrant II, 

 is negative. We find the reference number to be . 

Then 

. 

(b) The reference number for . Since the terminal point of is in 

quadrant IV,  is negative. Thus, 

. 

(c) Since (19π/4) − 4π = 3π/4, the terminal points determined by 19π/4 and 

3π/4 are the same. The reference number for 3π/4 is π/4. The terminal 

point is in quadrant II, therefore, sin(3π/4) is positive. Thus, 

. 

 

Figure 5.14. 

Activity 5.5. Find the values of the trigonometric functions of t from the 

given information. 

, terminal point of t is in quadrant II. 

, terminal point of t is in quadrant III. 

. 

(4) sect = 2, sint < 0. 
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5.3.3. Even-Odd Trigonometric Functions. Recall that if a function f 

satisfies f(−x) = f(x) for every x in its domain, then f is called an even 

function. If a function f satisfies f(−x) = −f(x) for every x in its domain, then 

it is an odd function. 

As is every function, trigonometric functions are either even or odd. Sine, 

cosecant, tangent, contangent are all odd functions while cosine and 

secant are even functions, i.e., 

sin(−t) = −sint, cos(−t) = cost, tan(−t) = −tant, 

csc(−t) = −csct, sec(−t) = sect, cot(−t) = −cott. 

Activity 5.6. Determine whether the function is even, odd, or neither. 

(1) f(x) = x2 sinx 

(2) f(x) = sinxcosx 

(3) f(x) = xsin3 x 

(4) f(x) = cos(sinx) 
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5.4. Right Triangle Trigonometry 

We also look at trigonometric functions from a right triangle perspective. 

Consider the following right triangle: 

 

Figure 5.15. 

Based on this triangle, the six trigonometric functions are defined as 

follows: 

 , , 

 , cot . 

The abbreviations opp,adj and hyp represent the lengths of the three 

sides of a right triangle, i.e., 

• opp = length of the side opposite θ, • adj = 

length of the side adjacent to θ, 

• hyp = length of the hypotenuse. 

It must be clear that the opposite and adjacent sides are always in 

relation to θ. In other words, they can be different depending on the 

position of θ while the hypotenuse is always the same. 

It is clear to see that the functions in the second row above are just 

reciprocals of the functions in the first row. 
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Example: Consider the following triangle: Find the six trigonometric func- 

tions. 

 

Figure 5.16. 

Solution 5.5. We first have to compute the value of the hypotenuse using 

the Pythagorean Theorem. Thus 

(5.1)  

= 5. 

Thus, the six trigonometric functions of θ are 

 , , , 

 , , cot . 

Example: Find the values of sin450, cos450 and tan450. 

Construct a right triangle with 450 as one of its acute angles, the adjacent 

and opposite sides to the 450 angle should have length 1 each. Then the 

√ 

hypotenuse is computed to be 2. The triangle is shown below: 

Solution 5.6. Thus, 
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Figure 5.17. 

Example: Use the equilateral triangle as shown below to find the values 

of sin600, cos600, sin300, and cos300. 

 

Figure 5.18. 

Solution 5.7. The lengths of the sides can be verified using the 

Pythagorean Theorem. 

  and cos60  , 

 sin300 =  and cos60  . 
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The following table shows the sine, cosine and tangent values of the 

common angles, 300, 450 and 600. 

The angles used in the two previous examples are most common. From 

the right triangle definitions, it can be shown that cofunctions of 

complementary angles are equal. That is, if θ is an acute angle, then the 

following relationships are true. 

 

Figure 5.19. 

sin(900 − θ) = cosθ cos(900 − θ) = 

sinθ, 

tan(900 − θ) = cotθ 
cot(900 − θ) = 

tanθ, 

sec(900 − θ) = cscθ 

csc(900 − θ) = 

secθ. 

Activity 5.7. (1) Find the exact values of the six trigonometric functions of 

the angle shown in the figure. (Use the Pythagorean Theorem to 

find the third side of the triangle.) 

 

Figure 5.20. 

(2) Use the given function value(s), and trigonometric identities 

(including the cofunction identities), to find the indicated 

trigonometric functions. 
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(a) tan600 

(b) sin300 

(c) cos300 (d) cot600 

(3) Find the values of θ in degrees (00 < θ < 900)and radians (0 < θ 

< π/2) without the aid of a calculator. 

 

5.4.1. The Law of Sines. Trigonometric ratios are used to solve right 

triangles. Trigonometric functions can be used to solve oblique triangles, 

thus, triangles without right angles. We follow the convention of labeling 

angles of a triangle as A, B, C and the lengths of the corresponding 

opposite sides as a,b, and c as shown below. 

 

Figure 5.21. 

The Law of Sines states that in a triangle ABC, we have 

. 

This law is used to solve two cases: 

• Given one side and two angles, (ASA or SAA), e.g., given a and 

A,B, find b. 
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• Given two sides and an angle opposite one of those sides, (SSA), 

e.g., given a,b and B, find A. 

Example: Solve for a, b and B in the following triangle. 

Solution 5.8. We find ∠B: 

∠B = 1800 − (200 + 250) = 1350. 

 

Figure 5.22. 

To find a, we need A, C and c to use the sine rule. Thus SAA, two angles 

and one side. 

 

And to find b, we need B, C and c. Thus 

 

Activity 5.8. (1) Use the Law of Sines to find the indicated side x. 
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Figure 5.23. 

(2) Use the Law of Sines to find the indicated angle θ. 

 

Figure 5.24. 

(3) Sketch each triangle, and then solve the triangle using the Law of 

Sines. 

(a) ∠A = 500, ∠B = 680, c = 230. 

(b) ∠A = 300, ∠C = 650, b = 10. 

5.4.2. The Cosine Rule. The Law of Cosines applies for the following 

two cases: 

• Given two sides and the included angle, (SAS), 

• Given all three sides, (SSS). 

The law states that in any triangle ABC, we have 



148 

a2 = b2 + c2 − 2bccosA, b2 

= a2 + c2 − 2accosB, c2 = 

a2 + b2 − 2abcosC. 

Example: A tunnel is to be built through a mountain. To estimate the 

length of the tunnel, a surveyor makes the measurements shown in the 

figure below. Use the surveyors data to approximate the length of the 

tunnel. 

 

Figure 5.25. 

Solution 5.9. We have to approximate the length c. We have two sides 

and an angle in between, this is the case SAS. So, we use the Law of 

Cosines. 

c2 = a2 + b2 − 2abcosC c2 = 3882 + 2122 

− 2(388)(212)cos82.40 

 

c ≈ 416.8 
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Thus the tunnel will be approximately 417 ft long. 

Activity 5.9. (1) Use the Law of Cosines to determine the indicated side 

x. 

 

Figure 5.26. 

(2) Use the Law of Cosines to determine the indicated angle θ. 

(3) Sketch each triangle, and then solve the triangle using the Law of 

Cosines. 

 

Figure 5.27. 

(a) a = 3.0, b = 4.0, ∠C = 530 

(b) b = 125, c = 162, ∠B = 400 

5.4.3. Navigation: Heading and Bearing. In navigation, direction is 

often given as a bearing, that is, an acute angle measured from due north 

or due south. Check the examples below: 

 

Figure 5.28. 
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Example: A pilot sets out from an airport and heads in the direction N 200 

E, flying at 200 mi/h. After one hour, he makes a course correction and 

heads in the direction N 400 E. Half an hour after that, engine trouble 

forces him to make an emergency landing. 

(a) Find the distance between the airport and his final landing point. 

(b) Find the bearing from the airport to his final landing point. 

We will need to sketch the course first. 

Solution 5.10. (a) Using the Law of Cosines, we find b, 

b2 = 2002 + 1002 − 2(200)(100)cos1600 

b2 ≈ 87587.70 b ≈ 295.95 

 

Figure 5.29. 

The pilot lands about 296 mi from his starting point. 

(b) We need to find ∠A using the Law of Sines. 

 

A ≈ sin−1(0.11557) 
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A ≈ 6.6360 

The line from the airport to the final landing site points in the 

direction 200 + 6.6360 = 26.6360 east of due north. The bearing is 

about N 26.60 E. 

Activity 5.10. (1) A short-wave radio antenna is supported by two guy 

wires, 165 ft and 180 ft long. Each wire is attached to the top of 

the antenna and anchored to the ground, at two anchor points 

on opposite sides of the antenna. The shorter wire makes an 

angle of 67! with the ground. How far apart are the anchor 

points? 

(2) A communications tower is located at the top of a steep hill, as 

shown. The angle of inclination of the hill is 580. A guy wire is to 

be attached to the top of the tower and to the ground, 100m 

downhill from the base of the tower. The angle a in the figure is 

determined to be 120. Find the length of cable required for the 

guy 

wire. 

 

Figure 5.30. 

(3) Two straight roads diverge at an angle of 650. Two cars leave 

the intersection at 2:00 P.M., one traveling at 50 mi/h and the 

other at 30 mi/h. How far apart are the cars at 2:30 P.M.? 
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(4) Two boats leave the same port at the same time. One travels at 

a speed of 30 mi/h in the direction N500E and the other travels 

at a speed of 26 mi/h in a direction S700E (see the figure). How 

far apart are the two boats after one hour? 

 

Figure 5.31. 

5.5. Trigonometric Identities 

Trigonometric functions are related to each other through equations 

called trigonometric identities. 

Reciprocal identities: 

 , cot . 

Quotient Identities: 

 , cot . 

Pythagorean Identities: sin2 θ + cos2 θ = 1, 1 + tan2 θ = sec2 θ, 1 

+ cot2 θ = csc2 θ. 

Sum Identities: 

sin(A + B) = sinAcosB + cosAsinB 
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cos(A + B) = cosAcosB − sinAsinB 

Double Angle Identities: 

If in the sum identities above, A = B, then the identities become the fol- 

lowing: 

sin2A = sinAcosA + cosAsinA = 2sinA, 

cos2A = cosAcosA − sinAsinA = cos2 A − sin2 A. 

Example: If cos  and θ is in quadrant IV, Find the values of all the 

trigonometric functions at θ. 

Solution 5.11. Using cosθ, we can find sinθ using the Pythagorean 

identity sin2 θ + cos2 θ = 1. Thus 

(5.2)  

Since θ is in quadrant IV, sinθ is negative, so . Now we can use 

the reciprocal identities to find values of the other functions at θ. 

 , , , 

 , cot . 

Example: 
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Simplify sint + cottcost. 

Solution 5.12. 

 

 

Example: 

Simplify . 

Solution 5.13. We know that 1 − sin2 x = cos2 x and csc2 x − 1 = cot2 x. 

Then 

 1 − sin2 x cos2 x 

 = 2 x 

 csc2 x − 1 cot 

 

Activity 5.11. (1) Use the given values to evaluate (if possible) all 

six trigonometric functions. 

 

(2) Use the fundamental identities to simplify the expression. There 

is more than one correct form of each answer. 

(a) cotθsecθ 

(b) sec2 x(1 − sin2 x) 

 

(f) tan2 x − tan2 xsin2 x 
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5.6. Trigonometric Graphs 

5.6.1. Sine and Cosine Functions. A function f is periodic if there is 

a positive number p such that f(t + p) = f(t) for every t. The Sine and 

Cosine functions are periodic in nature. They repeat values every 2π. 

Thus, 

sin(t + 2nπ) = sin(t) for any integer n cos(t 

+ 2nπ) = cos(t) for any integer n 

To sketch their graphs, we only sketch one period 2π. To draw their 

graphs more accurately, we use a table of values below. Note that we 

could still find other values by using a calculator. 

Now we use this information to graph these functions. 

 

Figure 5.32. 

 

Figure 5.33. 

 

Figure 5.34. 
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It is easy to see that the graph repeats itself after every 2π period. NB: It 

is customary to use the letter x to denote the variable in the domain of a 

function, so we will use this notation onwards, i.e., y = sinx. 

5.6.2. Graphs of y = asinx and y = acosx. In the graphs of y = asinx 

and y = acosx, the number |a| is called its amplitude. This number 

dictates the height of the curve. If |a| < 1, then the graphs are shrunk 

vertically. If |a| > 1, then the graphs are stretched vertically. 

Example: 

Look at the graph of . We first start with the graph 

of y = sinx and then multiply the y-coordinates by 2 and  respectively. 

When we multiply by 2, the graph is stretched vertically by a factor of 2 

and when we multiply by , the graph is shrunk vertically by a factor of . 

 

Figure 5.35. 

This applies to cosine graphs as well. 

Activity 5.12. Sketch the graphs of the following functions. 

 

5.6.3. Graphs of y = sinkx and y = coskx. In these functions, if k 6= 0, 

then both y = sinkx and y = coskx have period given by . If 0 < |k| < 1, 

the graphs are stretched horizontally and if |k| > 1, the graphs are shrunk 

horizontally. 
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Example: 

Let’s graph the sine curves y = sin2x and . 

For y = sin2x, we find that the period is , so the graph completes 

one period in the interval 0 ≤ x ≤ π. 

For , we find that the period is 2 , so the graph 

completes 

one period in the interval 0 ≤ x ≤ 4π. 

 

Figure 5.36. 

The same principles apply to the cosine curves as well. 

Activity 5.13. Sketch the graphs of the following functions. 

 

5.6.4. Graphs of y = asink(x − b) and y = acosk(x − b). These graphs 

have the same shape as the graphs of y = asinkx and y = acoskx 

respectively but shifted c units to the right if c > 0 and |c| units to the left if 

c < 0. The number c is called the phase shift of the sine or cosine graph. 

An appropriate interval on which to graph one complete period is 

[b,b + (2π/k)]. 

Example: 

Shown below are graphs of  and . 
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Figure 5.37. 

Example: 

Find the amplitude, period and phase shift of  and graph 

one complete period. 

The amplitude is |a| = |3| = 3. The period is . The phase shift 

is  to the right. One complete period occurs on the interval  

. 

Activity 5.14. Sketch the graphs of the following functions. 

 

 

Figure 5.38. 

 

5.6.5. Graphs of Tangent, Cotangent, Secant and Cosecant. 

The graphs of tangent and cotangent have period π: 

 tan(x + π) = tanx and cot(x + π) = cotx. 
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The graphs of cosecant and secant have period 2π: 

 csc(x + 2π) = cscx and sec(x + 2π) = secx. 

5.6.5.1. Tangent and Cotangent Graphs. We will start with the graph 

of the tangent function. Since the tangent function has a period of π, we 

can only sketch the graph on any interval of length π. We sketch the 

graph on the interval (−π/2,π/2). Note that as x approaches −π/2 and π/2, 

cosx approaches 0 and sinx approaches 1. Thus, tan  gets large. 

The graph of tanx, thus, approaches the vertical lines x = π/2 and x = 

−π/2. These lines are vertical asymptotes. Graphing the cotangent 

function follows the same arguments. The figure below shows the graph 

of y = tanx on the interval −π/2 < x < π/2 and y = cotx on the interval 0 < x 

< π. 

5.6.5.2. Cosecant and Secant graphs. To graph these functions, we 

use the reciprocal identities. Just as their reciprocals, they have a period 

of 2π. 

So the graphs of these two functions look as below: 

 

Figure 5.39. 
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Figure 5.40. 

All the graphs described above are shown below. Note the vertical 

asymp- 

totes. 

 

Figure 5.41. 

5.7. Graphs of Transformations of Tangent and 

Cotangent 

5.7.1. Graphs of y = atankx and y = acotkx. The functions y = atankx 

and y = acotkx, k > 0 have period π/k. Thus, one complete 

period of these functions occurs on any interval of length π/2. 

• To graph one period of y = atankx, an appropriate interval is 

. 

• To graph one period of y = acotkx, an appropriate interval is 

. 

Example: 

Graph the following tangent functions: 
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a. y = tan2x, 

Solution 5.14. The period is π/2 and the appropriate interval is 

(−π/4,π/4). The graph has the same shape as that of the tangent 

function, but is shrunk horizontally by a factor of . We then 

repeat that portion of the graph to the left and to the right. 

 

Figure 5.42. 

b. . 

Solution 5.15. This function completes one period as 

varies from . So the start of period is 

 

and the end of period is 
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The graph is the same as the graph in (a) but it is shifted to 

the right by π/4. 

 

Figure 5.43. 

Activity 5.15. Graph the following functions. 

 

(3) y = cot  

 

5.8. Graphs of Transformations of Cosecant and 

Secant Functions 

The functions y = acsckx and y = aseckx for any integer k > 0 have 

period 2π/k. 

The following are examples of such graphs. (a.) . 

We see here that the period is 2π/2 = π. An appropriate interval is [0,π] 

and the asymptotes occur in this interval whenever sin2x = 0. Thus, the 

asymptotes are x = 0, x = π/2 and x = π. In this interval, we sketch a 

graph with the same shape as that of one period of the cosecant function. 

The complete graph is obtained by repeating this shape to the left and to 

the right. 

. 
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We first notice that a graph of y = cscx completes one period between x = 

0 and x = 2π. So 

 

and 

So we graph the function  on the interval [ ]. So 

the graph is the same as that in (a.) but shifted to the left π/4. 

Activity 5.16. Graph the following functions. 

 

 

Figure 5.44. 
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5.9. Inverse Trigonometric Functions and their 

Graphs 

5.9.1. The Inverse Sine Function. The sine function is one-to-one on 

the interval [ pi/2,π/2] and it attains all the values in its range on this 

interval. So, the sine function has an inverse in this interval. 

The inverse sine function is the function sin−1 with domain [−1,1] and 

range 

[−π/2,π/2] defined by 

sin−1 x = y ⇐⇒ siny = x. 

The inverse function is also called arcsine, denoted by arcsin. 

The graph of sin−1 x is obtained by reflecting the graph of sinx, −π/2 ≤ x ≤ 

π/2, in the line y = x. This is shown below: 

 

Figure 5.45. 

We have the following cancellation properties: 

• sin(sin−1 x) = x for −1 ≤ x ≤ 1, 

• sin−1(sinx) = x for . 

Example: 

Find each value: 

, 

Solution 5.16. The number in the interval [−π/2,π/2] whose sine 

is . 
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, 

Solution 5.17. The number in the interval [−π/2,π/2] whose sine 

is . 

. 

Solution 5.18. Since , it is not in the domain of sin−1 x, so 

 is not defined. 

Activity 5.17. Find the exact value of the expression, if it is defined. 

 

5.9.2. The Inverse Cosine Function. We restrict the domain of the 

cosine function to the interval [0,π] because on it, the function attains 

each of its values exactly once. Thus, the cosine function is one-to-one in 

the interval [0,π] and so has an inverse. 

The inverse cosine function is the function cos−1 with domain [−1,1] and 

range [0,π] defined by 

cos−1 y = x ⇐⇒ cosx = y. 

The inverse cosine function is also called the arccosine, denoted by 

arccos. The graph of sin−1 x is obtained by reflecting y = cosx, 0 ≤ x ≤ π, 

in the line y = x. 
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Figure 5.46. 

We have the following cancellation properties that follow from the inverse 

properties: 

• cos(cos−1x) = x for −1 ≤ x ≤ 1, 

• cos−1(cosx) = x for 0 ≤ x ≤ π. 

Example: 

Find each value: 

, 

Solution 5.19. In the interval . 

• cos−1 0, 

Solution 5.20. In the interval [0,π], cos−1 0 = π/2. 

. 

Solution 5.21. No rational multiple of π has cosine , so we use 

a calculator in radian measure to find the value approximately 

. 

Activity 5.18. Find the exact value of each expression, if it is defined. 

 
5.9.3. The Inverse Tangent Function. Recall that the tangent 

function tanx has period π, and when graphing the function, we used the 

interval (−π/2,π/2). We restrict the domain of the tangent function to this 

interval, 

i.e., (−π/2,π/2) to obtain a one-to-one function. 

The inverse tangent function is the function tan−1 with domain R
˚
and 

range 

(−π/2,π/2) defined by 
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tan−1 x = y ⇐⇒ tany = x. 

The inverse tangent function is also called arctangent, denoted by arctan. 

The following cancellation properties follow: 

• tan(tan−1 x) = x for x ∈ R
˚
, 

• tan−1(tanx) = x for −π/2 < x < π/2. 

The graph is shown below: 

 

Figure 5.47. 

Example: 

Find each value: 

• tan−1 1, 

Solution 5.22. In the interval (−π/2,π/2), we find tan−1 1 = 

π/4. 

√ • 
tan−1 3, √ 

 Solution 5.23. In the interval (−π/2,π/2), we find tan−1 3 = 

π/4. 

• tan−1 20. 

Solution 5.24. Use a calculator in radian measure, tan−1 20 ≈ 

−1.52084. 
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Activity 5.19. Find the exact value of each expression, if it is defined. 

 

5.9.4. The Inverse Secant, Cosecant and Cotangent Functions. It 

is better to restrict the domain of the inverse function to an interval in 

which the function is one-to-one and on which it can attain all its values. 

We display the graphs of inverse secant, cosecant and cotangent 

functions below. 

 

Figure 5.48. 

Activity 5.20. Find the exact value of each expression, if it is defined. 

 

(3) cot  
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Figure 5.49. 

 

Figure 5.50. 

 
 

Unit Summary 

In this unit you have learned the following 

i)Measuring angles i degrees and radians 

ii)Defined the unit circle 

 iii)Defined trigonometric functions 

iv)Described right angle trigonometry 

v)Defined trigonometric identities 

vi)Sketched trigonometric graphs 

 

You were also required to solve some problems. You may be able to 

weigh your understanding of the module by grading your scores as 

follows: 25% (try to revisit all exercises, so as to boost your 

understanding); 50% (focus more on the areas that seemed a little bit 

tough); 75-100% (keep up the good work, however, don’t forget to refresh 

your knowledge by coming back to the exercises now and again).  


