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Simple Summary: The shortage of natural resources, prices, and high demand for fish oil has
encouraged the use of non-traditional ingredients in aquafeed. The search for an alternative lipid
source in aquafeeds has seen terrestrial vegetable oils at the epicenter of various flagship aqua-feed
research. Herein, we investigated the effects of substituting fish oil (FO) with camelina oil (CO)
on growth performance, fatty acid profile, digestibility, liver histology, and antioxidative status of
red seabream (Pagrus major). After 56 days of the feeding trial, the results suggested that FO can
be replaced with CO in the feeds of farmed red seabream without compromising growth, blood
chemistry, digestibility, and overall health status.

Abstract: A 56-day feeding trial to evaluate the responses of red seabream (initial weight: 1.8 ± 0.02 g)
to the substitution of fish oil (FO) with camelina oil (CO) at different ratios was conducted. The
control diet formulated at 46% CP (6F0C) contained only FO without CO; from the second to the fifth
diet, the FO was substituted with CO at rates of 5:1 (5F1C), 4:2 (4F2C), 3:3 (3F3C), 2:4 (2F4C), and 0:6
(0F6C). The results of the present study showed that up to full substitution of FO with CO showed
no significant effect on growth variables BW = 26.2 g–28.3 g), body weight gain (BWG = 1275.5–
1365.3%), specific growth rate (SGR = 4.6–4.7), feed intake (FI = 25.6–27.8), feed conversion ratio
(FCR = 1.0–1.1), biometric indices condition factor (CF = 2.2–2.4), hepatosomatic index (HSI = 0.9–1.1),
viscerasomatic index (VSI = 7.5–9.5), and survival rates (SR = 82.2–100) with different FO substitution
levels with CO. Similarly, there were no significant differences (p < 0.05) found in the whole-body
composition except for the crude lipid content, and the highest value was observed in the control
group (291 g/kg) compared to the other groups FO5CO1 (232 k/kg), FO4CO2 (212 g/kg), FO2CO4
(232 g/kg) and FO0CO6 (244 g/kg). Blood chemistry levels were not influenced in response to test
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diets: hematocrit (36–33%), glucose (Glu = 78.3–71.3 mg/dL), total protein (T-pro = 3.1–3.8 g/dL),
total cholesterol (T-Chol = 196.0–241 mg/dL), blood urea nitrogen (BUN = 9.0–14.6 mg/dL), total
bilirubin (T-Bil = 0.4–0.5 mg/dL), triglyceride (TG = 393.3–497.6 mg/dL), alanine aminotransferase
test (ALT = 50–65.5 UL/L), aspartate aminotransferase test (AST = 38–69.3 UL/L). A remarkable
modulation was observed in catalase (CAT) and superoxide dismutase (SOD) activities in the liver,
as CAT and SOD values were lower with the complete FO substitution with CO (0F6C), and the
highest values were observed in the control and (4F2C). This study indicates that red seabream
may have the ability to maintain LC-PUFAs between tissues and diets, and CO substitution of FO
could improve both lipid metabolism and oxidation resistance as well as maintain digestibility. In
conclusion, dietary FO can be replaced up to 100% or 95% by CO in the diets of red seabream as long
as n-3 HUFA, EPA, and DHA are incorporated at the recommended level.

Keywords: camelina oil; liver histology; oxidative status; red seabream

1. Introduction

Highly unsaturated fatty acids (HUFAs), such as eicosapentaenoic acid (EPA) and
docosahexaenoic acid (DHA) are certified components of human health with neurological,
immunomodulatory, pathological, cardiovascular, and carcinogenic benefits [1]. Fish are a
major source of EPA and DHA [2]. Globally, aquaculture is grappling with a low supply of
fish oil (FO) as the main lipid source for fish feed [3,4]. To augment FO fluctuations, the
search for an alternative lipid source in aquafeeds has seen terrestrial vegetable oils at the
epicenter of various flagship aqua-feed research [5].

Dietary de novo oilseed Camelina sativa (L. Crantz) is an ancient crop that originated
in Germany around 600 B.C. and is cultivated traditionally in central Europe as an oil
crop [6]. Camelina production plummeted in the Middle Ages (5th to 15th centuries), but
still evolved as a weed with flax, and has in modern days been coined the “false flax.”
Camelina is a member of the Cruciferae (Brassicaceae) family, together with mustards,
rapes, canola, radish, turnip, broccoli, cabbage, collards, cauliflower, rutabaga, Brussels
sprouts, kohlrabi, and many weeds [7]. Utilization of camelina oil (CO) has been reported
in various carnivorous fish species; up to 100 % of added dietary FO was replaced by CO
without adverse effects on growth performance, nutrient utilization, and proximate carcass
composition of rainbow trout (Oncorhynchus mykiss) [8]. In addition, Huyben, et al. [9]
demonstrated that up to 40% of FO can be replaced with CO without negative effects on
growth performance, fillet fatty acid profile and gut microbiome of gilthead sea bream
(Sparus aurata).

Elsewhere, supplementation of genetically modified (GM) camelina oil diets of Eu-
ropean sea bass (Dicentrarchus labrax L.) triggered a metabolic up regulation of both β-
oxidation (cpt1a) and fatty acid transport (fabp1) [10]. The authors opinioned that GM
camelina oil is an excellent source of EPA and DHA and thus an ideal substitute for FO
in diets of marine carnivorous species, contributing to bridging the gap between supply
and demand for n-3 LC PUFA while also maintaining or increasing tissue n-3 LC PUFA
contents [10].

Novel camelina oil (CO) contain high contents of 18:2 n-6 (linoleic acid), 18:1 n-9
(oleic acid) omega 3 α-linolenic acid (ALA, C18:3n-3), which is an essential fatty acid for
fish [11–14]. Previous studies have shown that FO substitution by appropriate proportions
of CO in the feed maintains fish growth response as well as fish health [12]. Total replace-
ment of FO with camelina oil in diets for tilapia could be a suitable alternative for culture,
since the growth performance of fish fed total camelina oil diets was not affected compared
to a total FO diet, as well as a typical commercial diet. Fatty acid concentrations were
significantly modified after 8 weeks of trial, and although camelina oil not enriched tilapia
fillet with EPA + DHA at the level of the FO, it efficiently maintained an n-3/n-6 ratio
within the recommendation for the prevention of cardiovascular diseases [15]. Camelina
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oil is less susceptible to oxidative stress because it contains a high amount of γ-tocopherol,
the most potent antioxidant tocopherol isomer [16].

Red seabream (Pagrus major), an exclusively carnivorous marine fish, is commonly
cultured in Japan and other countries [17,18]. Several works have been performed on the
impact of dietary vegetable oil and algal lipid source feeding on red seabream growth
responses and fatty acids [19–21]. Studies have also reported the effects of vegetable and
algal lipid supplementation in diets of red seabream on blood function, immunity, growth
response, oxidative status, and nutrient digestibility, but effects of dietary oils on tissue
histology of red seabream are limited and sporadic. In fact, research on the utilization of
CO in red seabream diets is limited. The objective of our study was to determine the effect
of FO replacement with CO on the growth performance, fatty acid profile, blood health,
fatty acid digestibility, histology of the liver, and oxidative status of red seabream.

2. Materials and Methods
2.1. Experimental Diets

Five experimental diets had homogeneous nutrient contents of energy (259.4 kJ/g),
crude protein (506.6 g/kg), and lipids (143 g/kg) formulated with different ratios of FO
and CO. The control diet (FM: 46%) (6F0C) contained FO without CO, and the other four
experimental diets were formulated by gradually substituting FO with CO at rates of 5:1
(5F1C), 4:2 (4F2C), 3:3 (3F3C), 2:4 (2F4C), and 0:6 (0F6C) (Tables 1 and 2). The main sources
of protein in the feed were fishmeal and soybean meal. A blend of soybean lecithin, FO,
CO, DHA, and EPA were used as lipid sources. Dextrin was used as a carbohydrate source.
Activated gluten was added to the mixture as a binder to improve pellet cohesion and
avoid pellet leaching. Dried ingredients were ground, sieved through a uniform mesh
to maintain a homogenous size, and mixed in a food mixer for 15 min. The liquid form
ingredients were homogenized in a sonicator (CA4455Z, Kaijo us Corporation, Tokyo,
Japan) before mixing with dry ingredients. Water was added to the feed ingredients to
form a dough that was pelleted (1.2–2.2 mm in diameter) using a mincer (ROYAL Inc.,
Tokyo, Japan). Feed pellets were dried at 60 ◦C for 120 min, and the dried pellets were
stored in plastic bags at −20 ◦C until use.

Table 1. Experimental diets formulation and proximate composition.

Ingredient, g/kg
DM

Test Diets

6F0C 5F1C 4F2C 2F4C 0F6C

Brown fish meal a 460 460 460 460 460
Soybean meal b 205 205 205 205 205

Fish oil c 60 50 40 20 -
Camelina oil e - 10 20 40 60

Soybean Lecithin d 30 30 30 30 30
EPA f 50 50 50 50 50

DHA g 50 50 50 50 50
Dextrin h 50 50 50 50 50

Activated gluten i 80 80 80 80 80
Mineral mix j 40 40 40 40 40
Vitamin mix k 40 40 40 40 40

Stay C l 0.8 0.8 0.8 0.8 0.8
α-Cellulose m 24.5 24.5 24.5 24.5 24.5
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Table 1. Cont.

Ingredient, g/kg
DM

Test Diets

6F0C 5F1C 4F2C 2F4C 0F6C

Proximate composition
Crude Protein 498 ± 3 513 ± 4 508 ± 5 506 ± 0 508 ± 9
Crude Lipid 150 ± 9 144 ± 8 143 ± 13 135 ± 2 144 ± 10

Moisture 101 ± 1 93 ± 1 100 ± 4 90 ± 00 91 ± 5
Ash 101 ± 1 106 ± 00 101 ± 3 104 ± 3 103 ± 5

Energy (kJ/g) n 2580 ± 6 2612 ± 14 2603 ± 14 2590 ± 4 2591 ± 2
a Defatted brown fish meal. b J-OIL MILLS, Inc, Tokyo, Japan c Riken Vitamin, Tokyo, Japan. d Kanto Chemical
Co., Inc. Tokyo. e Biopure oil, Box 194, Fort Qu Appele, SK SOG ISO. f Riken Vitamin, Tokyo, Japan. g Riken
Vitamin, Tokyo, Japan. h,i Glico Nutrition Company Ltd. Osaka, Japan. Commercial name “A-glu SS. j Mineral
mixture (mg/kg diet): MgSO4 (5.07), Na2HPO4 (3.23), K2HPO4 (8.87), Fe citrate (1.1), Ca lactate (12.09), Al(OH)3
(0.01), ZnSO4 (0.13), MnSO4 (0.03), Ca(IO3)2 (0.01), and CoSO4 (0.04). k Vitamin mixture (mg/kg diet): β-carotene
(0.10), vitamin D3 (0.01), menadione NaHSO3·3H2O (K3) (0.05), dl-α-tocopherol acetate (E) (0.38), thiamine-nitrate
(B1) (0.06), riboflavin (B2) (0.19), pyridoxine-HCl (B6) (0.05), cyanocobalamin (B12) (0.0001), biotin (0.01), inositol
(3.85), niacin (nicotinic acid) (0.77), Ca pantothenate (0.27), folic acid (0.01), choline chloride (7.87), p-amino
benzoic acid (0.38), and cellulose (1.92). l Stay-C: L-ascorbyl-2-monophosphate-Na/Ca (DSM Nutrition Japan
K. K.). m Nippon Paper Chemicals, Tokyo, Japan. n Calculated using combustion values for protein, lipid, and
carbohydrate of 23.6, 39.5, and 17.2 kJ/g.

Table 2. Fatty acid composition (mg/g lipids) in experimental diets.

Fatty Acid Type
Test Diet

6F0C 5F1C 4F2C 2F4C 0F6C

14:0 14.0 ± 1.8 13.8 ± 0.6 14.3 ± 0.3 11.2 ± 0.2 7.2 ± 0.2
16:0 51.1 ± 0.9 64.7 ± 0.6 86.0 ± 3.0 95.8 ± 50.0 114.0 ± 14.5
18:0 82.0 ± 2.0 35.0 ± 0.7 43.9 ± 3.9 37.4 ± 0.5 23.8 ± 4.3

∑Saturated 147.1 ± 3.6 132.5 ± 1.4 144.2 ± 2.1 144.4 ± 5.4 145 ± 4.1
16:1n-9 55 ± 1.8 50.8 ± 0.6 54.2 ± 0.7 32.9 ± 1.5 31.1 ± 0.1
18:1n-5 1.7 ± 0.5 1.1 ± 0.9 1.7 ± 0.1 2.7 ± 0.2 2.2 ± 0.6
18:1n-9 64.3 ± 1.2 86.1 ± 3.1 120.4 ± 2.0 137.1 ± 1.3 155.2 ± 2.6
20:1n-9 20.8 ± 4.0 17.0 ± 3.5 20.5 ± 1.3 11.0 ± 0.1 9.5 ± 0.3
22:1n-9 33.5 ± 3.5 17.8 ± 0.2 8.9 ± 0.4 7.9 ± 1.6 2.7 ± 1.5

∑MUFA 175.5 ± 0.9 172.8 ± 5.8 205.7 ± 4.1 191.6 ± 6.5 200.7 ± 2.8
18:2n-6 41.1 ± 3.5a 52.7 ± 4.1 72.5 ± 3.6 84.8 ± 0. 103.4 ± 11.0
18:3n-6 6.4 ± 0.2 2.2 ± 0.1 1.6 ± 0.2 1.3 ± 0.1 0.4 ± 0.0
20:4n-6 8.2 ± 6.2 7.8 ± 4.6 6.4 ± 0.4 3.8 ± 0.2 2.7 ± 0.5
22:4n-6 2.1 ± 0.2 1.7 ± 0.1 1.4 ± 0.1 0.5 ± 0.0 0.0 ± 0.0

∑n-6 fatty acids 57.8 ± 8.3 64.4 ± 2.5 81.9 ± 7.6 90.4 ± 1.6 106.5 ± 1.6
18:3n-3 8.7 ± 1.6 10.0 ± 0.0 10.7 ± 0.7 12.3 ± 0.1 14.1 ± 8.8
18:4n-3 6.5 ± 0.2 3.1 ± 0.1 2.2 ± 0.1 1.8 ± 0.3 0.0 ± 0.0
20:3n-3 2.4 ± 0.5 1.4 ± 0.1 1.2 ± 0.1 0.5 ± 0.5 0.2 ± 0.2
20:4n-3 10.5 ± 0.2 6.5 ± 0.1 3.3 ± 0.3 3.5 ± 0.1 1.5 ± 0.4
20:5n-3 58.1 ± 20.2 57.0 ± 20.0 31.0 ± 2.0 21.3 ± 1.8 17.1 ± 1.8
22:5n-3 18.5 ± 4.5 14.2 ± 1.0 10.2 ± 0.7 9.0 ± 1.9 7.3 ± 2.0
22:6n-3 144.9 ± 23.9 129.0 ± 30.0 115.7 ± 11.1 101.0 ± 1.5 107.5 ± 2.5

∑n-3 fatty acids 249.6 ± 0.2 221.2 ± 2.6 174.3 ± 6.1 149.4 ± 2.3 146.5 ± 0.5
∑PUFA 307.4 ± 12.4 285.6 ± 21.0 256.2 ± 19.2 239.8 ± 21.7 253. ± 46.2

∑-3HUFA 234.4 ± 1.7 208.1 ± 16.2 161.4 ± 8.7 139.3 ± 0.4 133.6 ± 0.4
∑n-3/n-6 ratio 4.3 3.4 2.1 1.7 1.4
∑EPA+DHA 203 ± 21.1 186.1 ± 11.4 146.7 ± 2.1 122.3 ± 2.5 124.6 ± 1.2

Values are expressed as mean ± standard error (n = 2). Absence of superscript letters refers to non-significant
differences between treatments (p > 0.05). Total PUFA is expressed as the sum of total n-3 fatty acids and total n-6
fatty acids. Total n-3HUFA is expressed as the sum of n-3 fatty acids in carbons of more than 20. The n-3:n-6 ratio
is expressed as total n-3 PUFA divided by total n-6 PUFA. The sum of eicosapentaenoic acid (EPA; C20:5n-3) and
docosahexaenoic acid (DHA; C22:6n-3) are essential fatty acids.

2.2. Husbandry

Red seabream juveniles were procured and transported from Tawaki Suisan Ltd.,
Kumamoto Prefecture, Japan, to Kamoike Marine Production Laboratory, Faculty of Fish-
eries, Kagoshima University, Japan. Fish were stocked indoors in 500 L polyethylene tanks
for a week to acclimatize to laboratory conditions while they were fed a commercial diet
(45% crude protein; Higashimaru Foods Ltd., Kagoshima, Japan). At the onset of the
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feeding trial, 20 fish (1.8 g ± 0.02) per tank (three tanks per treatment) were randomly
stocked into fifteen polyethylene tanks with 100 L capacity (filled with 80 L of water) in a
flow-through seawater system (2.5 L/min) and continuous aeration under a 12 h light/12 h
dark photoperiod regime. Water parameters of rearing tanks through the experimental
period were 26.4 ± 1.2 ◦C, 32.1 ± 0.5 g/L of salinity, 6.31 ± 0.1 mg/L of dissolved oxygen,
and 7.4 of pH 70% of the water in culturing tanks was exchanged with new sea water every
day to maintain favorable conditions for growth and survival of cultured fish. Fish were
manually fed twice daily (08:00 and 16:00 h) until apparent satiation and uneaten diets
were collected, dried, and weighted to determine the actual feed intake.

2.3. Performance Variables and Biometric Indices

At the end of the feeding trial, the fish weight and length were measured individually.
Growth indices, feed utilization, and survival rates were calculated using the following
formulae:

Weight Gain (WG %) =
W56d − W0d

W0d
× 100 (1)

Specific Growth Rate (SGR % /day) =
Ln W56d − Ln W0d

T
× 100 (2)

Feed Intake (FI, g/fish/56 d) =
Dry diet given − Dry uneaten diet recovered

No. of fish
(3)

Feed Conversion Ratio (FCR) =
FI (g)

WG (g)
(4)

Survival rate (SR %) =
N56d
N0d

× 100 (5)

Condition factor (CF) =
W
L3 × 100 (6)

where W56d = final body weight at 56 days, W0d = initial body weight, T = the experimental
period in days (d), N0d = initial number of fish, N56d = final number of fish, W = total fish
weight (g), and L = total fish length (cm).

Nine fish were collected randomly per treatment, anesthetized (2-phenoxyethanol,
200 µL/L) and the liver and viscera were eviscerated on the ice surface for hepatosomatic
(HSI) and viscerasomatic (VSI) indices. Portions of the collected liver were used for
histological studies and hepatic antioxidant analysis.

HSI =
Liver weight, g

Fish body weight, g
× 100 (7)

VSI =
Viscera weight, g

Fish body weight, g
× 100 (8)

2.4. Proximate Composition Analysis, Fatty Acid and Digestibility Assessment

Samples of feed and fish (four fish per tank) were used for proximate composition
determination according to standard procedures [22]. Briefly, moisture content was ob-
tained after drying in an oven at 135 ◦C for 5 h. Ash was determined after incineration
at 550 ◦C for 6 h. The crude protein content was obtained by determining the nitrogen
content (N × 6.25) using automated Kjeldahl analysis (Tecator Kjeltec Auto 2100 analyzer,
Foss, Sweden). Crude lipids were gravimetrically determined using a Soxhlet apparatus.

Total lipids were extracted using a chloroform methanol solution and measured by
gravimetry after nitrogen drying. To determine the fatty acid composition of total lipids,
fatty acid methyl esters (FAMES) in samples were prepared by transesterification using
boron trifluoride in methanol and dichloromethane [23]. To determine the fatty acid
composition in diets and tissues, FAMEs were identified by comparison of the equivalent
chain length (ECL) value and quantified standards (C23:0 methyl esters) determined by
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a Shimadzu AOC-20I GC 2010 equipped with a flame ionization detector (Supelco, Inc.,
Japan), and the chromatogram peak areas of total lipids, 5α-cholestane, and fatty acids in
the feed were compared directly to those of total lipid, 5α-cholestane and fatty acids in the
feces of fish. Digestibility was calculated using the equation described by Sigurgisladottir,
et al. [24].

Dry matter digestibility = 100 − (cholestane in diet / cholestane in faeces) × 100 (9)

Nutrient digestibility = 100 − ((cholestane in diet / cholestane in faeces) ×
(nutrient in diet / cholestane in diet) × 100)

(10)

2.5. Blood Hematological Parameters

Heparinized disposable syringes (1600 IU/mL) were used to collect blood from
5 fish/tank. The hematocrit was determined using the micro-hematocrit technique. Then,
plasma was obtained by centrifuging the blood samples at 3000× g for 15 min under 4 ◦C,
and then stored at −20 ◦C until analyses. Glucose (Glu), total cholesterol (T-Chol), blood
urea nitrogen (BUN), total bilirubin (T-Bil), alanine aminotransferase test (ALT) aspartate
aminotransferase test (AST), total protein (T-pro), and triglyceride (TG) levels were mea-
sured using an automated analyzer (SPOTCHEM EZ model SP-4430, Arkray, Inc. Kyoto,
Japan).

2.6. Antioxidants Activity

First, liver and muscle samples were homogenized in cold iced 0.86% NaCl solution
and centrifuged at 4 ◦C and 12,000 rpm for 10 min. The supernatant of liver samples
and blood plasma were determined using a microplate reader (Multiskan GO; Thermo
Fisher Scientific, K. K., Tokyo, Japan). SOD activity was determined using the Kit-WST
assay (Dojindo Molecular Technologies, Inc., Rockville, MD, USA) at 450 nm. The catalase
activity (CAT) assay was performed using spectrophotometric determination of hydrogen
peroxide (H2O2) which forms a stable complex with ammonium molybdate that absorbs at
405 nm.

2.7. Hepatic Histopathological Assessment

Liver samples were cut into small pieces and immersed in Bouin solution for 12 h.
The fixed tissues were processed routinely in alcohol and rinsed every 24 h until clear.
Tissues were embedded in paraffin blocks, sectioned, deparaffinized, and rehydrated
using standard techniques. Sagittal sections (5 µm thickness) were obtained using a rotary
microtome (RM 2135, Leica, Nussloch, Germany), placed on glass slides, rehydrated,
and stained with hematoxylin and eosin. Finally, the slide was permanently mounted
(Entellan, EMD Millipore, Billerica, MA, USA) and examined under a light microscope
(BX41, Olympus, Tokyo, Japan).

2.8. Statistical Analysis

Data on all parameters were pooled and subjected to verification for normality and
homogeneity of variances using Shapiro–Wilk and Levene tests, respectively. One-way
analysis of variance (ANOVA) was performed on all data. Significantly different mean data
groups were located using Fisher’s least significant differences (LSD) test. All statistical
analyses were performed using Super ANOVA 1.11, Abacus Concepts, Berkeley, California,
USA. Data sets are presented as mean ± standard error of the mean (SEM, n).

3. Results
3.1. Growth Performance Variables

Table 3 shows the growth, feed utilization, biometric indices, and survival rates of
red seabream fed the experimental diets for 56 days. The average initial body weight of
red seabream juveniles was 1.8 g. After the 8-week feeding trial, no significant differences
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were observed in body weight (BW = 26.2–28.3 g), body weight gain (BWG = 1275.5–
1365.3%), specific growth rate (SGR = 4.6–4.7), feed intake (FI = 25.6–27.8), feed conversion
ratio (FCR = 1.0–1.1), condition factor (CF = 2.2–2.4), hepatosomatic index (HSI = 0.9–1.1),
viscerasomatic index (VSI = 7.5–9.5), and survival rate (SR = 82.2–100) of fish fed with
different FO substitution levels with CO.

Table 3. Performance variables and biometric indices of red seabream (Pagrus major) fed the test diets
for 56 days.

Parameters
Test Diets

6F0C 5F1C 4F2C 2F4C 0F6C

BW0 (g/fish) 1.8 1.9 1.8 1.9 1.9
BW56d (g/fish) 26.2 ± 0.1 27.1 ± 0.2 27.3 ± 0.6 28.3 ± 0.1 26.5 ± 0.1

BWG (%) 1306.2 ± 47.9 1326.3 ± 6.1 1364.4 ± 27.2 1365.3 ± 49.1 1275.5 ± 25.4
SGR 4.7 ± 0.1 4.7 ± 0.0 4.7 ± 0.0 4.7 ± 0.1 4.6 ± 0.0

FI 25.6 ± 0.2 26.7 ± 0.4 27.8 ± 1.2 27.0 ± 0.8 27.2 ± 1.1
FCR 1.1 ± 0.0 1.1 ± 0.0 1.1 ± 0.1 1.0 ± 0.0 1.1 ± 0.0
HSI 1.1 ± 0.1 1.0 ± 0.1 0.9 ± 0.1 1.1 ± 0.4 1.1 ± 0.1
VSI 9.1 ± 0.7 9.5 ± 0.3 7.5 ± 0.6 8.5 ± 0.7 8.9 ± 0.7
CF 2.3 ± 0.0 2.3 ± 0.1 2.4 ± 0.1 2.2 ± 0.0 2.5 ± 0.2
SR 82.2 ± 5.8 97.7 ± 2.2 88.8 ± 8.0 100 ± 0.0 86.6 ± 6.62

Values are expressed as the mean ± standard error (n = 3). BW56d = body weight at 56 day; BWG = body weight
gain; SGR = specific growth rate; FI = feed intake; FCR = feed conversion ratio; HSI = hepatosomatic index;
VSI = viscerasomatic index; CF = condition factor; SR = survival rate (%).

3.2. Proximate Composition of Fish Whole Body

Table 4 shows the proximate composition of the red seabream whole body after
56 d of the feeding period. There was no significant alteration in the composition of the
red seabream body, except for the crude lipid content. The basal diet (6F0C = free of
CO) showed the highest lipid content (291 g/kg) compared to the other groups FO5CO1
(232 k/kg), FO4CO2 (212 g/kg), FO2CO4 (232 g/kg) and FO0CO6 (244k g/kg).

Table 4. Carcass proximate analysis (g/kg, dry matter basis) of red seabream (Pagrus major) fed the
experimental diets for 56-days.

Parameter
Test Diets

FO6CO0 FO5CO1 FO4CO2 FO2CO4 FO0CO6

Moisture 704 ± 4.8 694 ± 4.5 702 ± 11.8 697 ± 6.9 700 ± 4.7
Crude Protein 546 ± 6 512 ± 00 544 ± 45 539 ± 4 531 ± 2
Crude Lipid 291 ± 3 a 232 ± 1 b 212 ± 4 bc 232 ± 1 b 244 ± 9 b

Ash 157 ± 2 154 ± 3 161 ± 2 155 ± 1 155 ± 1
Values are expressed as the mean ± standard error (n = 3). Absence of superscript letters refers to non-significant
differences between treatments (p > 0.05) and presence of different superscript letters refers to significant differ-
ences between treatments (p < 0.05).

The contents of EPA, DHA, and Σn-3 PUFA in juvenile red seabream decreased with
increasing CO replacement levels, and C18:1n-9, C18:2n-6, and C18:3n-3 PUFA increased
with the corresponding increase in FO replacement by CO (Tables 5 and 6). It is worth
highlighting that ARA, EPA, and DHA in the liver and muscle of red seabream were mirror
images of those detected in the respective diets. The n-3:n-6 ratio between diets and tissues
was constant (Tables 5 and 6), indicating efficient bioconversion of n-3 PUFA from CO.
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Table 5. Fatty acid composition (mg/g lipid) in the liver of red seabream (Pagrus major) fed the
experimental diets 56-days.

Fatty Acid Type
Test Diet

6F0C 5F1C 4F2C 2F4C 0F6C

14:0 27.1 ± 0.3 29.1 ± 0.2 33.5 ± 0.6 32.0 ± 0.1 26.1 ± 0.2
16:0 123.2 ± 0.1 a 109.5 ± 0.1 a 102.5 ± 0.7 b 96.0 ± 0.3 b 85.9 ± 0.1 b

18:0 67.5 ± 0.0 a 57.5 ± 0.2 a 46.1 ± 0.6 ab 36.0 ± 0.6 bc 26.3 ± 0.5 bc

∑Saturated 217.8 ± 0.0 a 195.6 ± 0.3 a 182.1 ± 0.3 ab 164.0 ± 0.9 b 138.3 ± 0.1 bc

16:1n-9 61.5 ± 0.5 a 44.8 ± 0.2 a 37.7 ± 0.9 a 32.9 ± 0.7 ab 27.0 ± 0.7 b

18:1n-5 4.9 ± 0.2 a 2.0 ± 0.1 a 3.0 ± 0.1 a 1.7 ± 0.01 b 0.0 ± 0.7 c

18:1n-9 70.1 ± 0.01 a 98.3 ± 0.5 b 124.6 ± 0.8 c 148.4 ± 0.1 c 168.6 ± 1.0 c

20:1n-9 51.0 ± 0.2 a 44.2 ± 0.2 a 36.8 ± 0.5 b 37.5 ± 0.0 b 31.2 ± 2.1 c

22:1n-9 34.5 ± 0.3 a 31.0 ± 0.01 a 23.0 ± 0.0 a 20.6 ± 0.5 ab 13.6 ± 0.1 b

∑MUFA 222.0 ± 0.6 219.5 ± 0.1 223.1 ± 0.2 241.1 ± 0.6 240.2 ± 2.1
18:2n-6 84.0 ± 0.1 86.1 ± 0.2 99.2 ± 2.7 108.9 ± 1.5 113.2 ± 4.6
18:3n-6 5.8 ± 0.2 a 3.7 ± 0.1 a 3.1 ± 0.2 a 2.5 ± 0.8 ab 1.5 ± 0.0 b

20:4n-6 9.6 ± 0.5 a 5.3 ± 0.6 ab 3.6 ± 0.0 b 3.0 ± 0.0 b 3.2 ± 0.0 b

∑n-6 fatty acids 99.6 ± 0.2 95.1 ± 0.0 105.3 ± 0.2 114.4 ± 1.3 117.7 ± 3.2
18:3n-3 15.5 ± 0.4 a 18.6 ± 0.4 ab 20.2 ± 0.6 b 25.1 ± 2.1 bc 27.9 ± 0.0 bc

18:4n-3 12.5 ± 0.1 a 9.1 ± 0.2 ab 9.6 ± 0.2 ab 7.9 ± 0.0 b 3.9 ± 0.0 c

20:3n-3 7.4 ± 0.3 a 3.6 ± 0.1 b 1.7 ± 0.0 bc 0.6 ± 0.0 c 0.9 ± 0.4 c

20:4n-3 6.3 ± 0.5 a 3.7 ± 0.02 b 2.3 ± 0.01 b 2.6 ± 0.00 b 0.0 ± 0.0 c

20:5n-3 80.5 ± 1.6 a 59.6 ± 0.2 b 55.7 ± 0.3 b 47.4 ± 0.8 b 52.5 ± 2.4 b

22:5n-3 23.0 ± 0.6 a 14.5.0 ± 0.2 b 7.1 ± 0.5 c 6.7 ± 2.0 c 6.5 ± 0.1 c

22:6n-3 159.0 ± 0.1 145 ± 0.8 142.2 ± 0.5 128.4 ± 0.7 120.2 ± 0.0
∑n-3 fatty acids 304.2 ± 2.6 a 254.9 ± 2.9 ab 238.8 ± 0.0 ab 218.7 ± 0.9 ab 211.9 ± 2.1 ab

∑PUFA 1 403.8 ± 0.9 350 ± 5.3 344.1 ± 0.0 333.1 ± 1.1 329.6 ± 0
∑-3HUFA 2 276.2 ± 5.9 226.4 ± 2.5 209.0 ± 2.9 185.7 ± 4.30 180.1 ± 5.2

∑n-3/n-6 ratio 3 3.1 2.7 2.3 2.0 1.8
∑EPA + DHA 4 239.5 ± 0.1 a 204.6 ± 0.0 a 197.9 ± 0.0 a 175.8 ± 0.0 ab 172.7 ± 0.3 ab

Values are expressed as mean ± standard error (n = 2). Absence of superscript letters refers to non-significant dif-
ferences between treatments (p > 0.05) and presence of different superscript letters refers to significant differences
between treatments (p < 0.05). 1 Total PUFA is expressed as the sum of total n-3 fatty acids and total n-6 fatty
acids. 2 Total n-3HUFA is expressed as the sum of n-3 fatty acids in carbons of more than 20. 3 The n-3: n-6 ratio is
expressed as total n-3 PUFA divided by total n-6 PUFA. 4 Essential fatty acids = the sum of eicosapentaenoic acid
(EPA; C20:5n-3) and docosahexaenoic acid (DHA; C22:6n-3).

Table 6. Fatty acid composition (mg/g lipid) in the muscle of red seabream (Pagrus major) fed the
experimental diets for 56-days.

Fatty Acid Type
Test Diet

6F0C 5F1C 4F2C 2F4C 0F6C

14:0 26.8 ± 0.1 a 17.1 ± 0.2 a 12.4 ± 0.2 ab 11.6 ± 0.4 abc 8.6 ± 0.1 c

16:0 73.0 ± 0.2 75.2 ± 0.1 82.4 ± 0.7 99.6 ± 0.3 108.2 ± 0.1
18:0 96.3 ± 0.0 a 53.2 ± 0.2 ab 45.5 ± 0.6 ab 30.1 ± 0.6 bc 27.9 ± 0.5 bc

∑Saturated 196.1 ± 5.6 145.5 ± 0.3 140.3 ± 0.3 141.3.4 ± 0.9 144.7 ± 0.1
16:1n-9 83.6 ± 0.4 a 65.7 ± 0.2 ab 44.0 ± 0.9 ab 31.4 ± 0.7 ab 29.9 ± 0.5 b

18:1n-5 1.4 ± 0.2 0.2 ± 0.1 0.2 ± 0.1 - ± - - ± -
18:1n-9 76.6 ± 2.5 a 101.3 ± 0.5 a 126.2 ± 0.8 ab 145.8 ± 0.1 ab 164.2 ± 1.0 b

20:1n-9 21.2 ± 0.0 a 13.5 ± 0.2 b 14.2 ± 0.5 b 13.6 ± 0.0 b 11.0 ± 1.2 b

22:1n-9 35.5 ± 0.5 26.0 ± 0.01 23.5 ± 0.0 20.3 ± 0.5 20.9 ± 0.1
∑MUFA 218.3 ± 1.6 206.7 ± 0.1 208.1 ± 0.2 211.1 ± 0.6 226 ± 2.1
18:2n-6 63.2 ± 0.1 a 80.9 ± 0.2 ab 118.4 ± 2.7 ab 128.8 ± 1.5 ab 144.0 ± 1.3 b

18:3n-6 6.1 ± 0.2 a 1.7 ± 0.1 b 0.1 ± 0.2 b 0.9 ± 0.8 b 0.0 ± 0.0 c

20:4n-6 8.6 ± 0.5 a 6.2 ± 0.6 a 4.3 ± 0.0 a 1.0 ± 0.0 b 0.0 ± 0.0 c

∑n-6 fatty acids 77.9 ± 0.2 88.8 ± 2.1 122.8 ± 0.2 130.7 ± 1.3 144.0 ± 3.2
18:3n-3 10.6 ± 0 10.1 ± 0.4 12.4 ± 0.6 13.7 ± 2.1 14.7 ± 0.0
18:4n-3 4.1 ± 0.02 a 1.3 ± 0.2 b 1.2 ± 0.2 b 1.2 ± 0.0 b 1.2 ± 0.0 b

20:3n-3 4.5 ± 0.2 a 1.2 ± 0.1 b 0.6 ± 0.0 c 0.6 ± 0.0 c 1.1 ± 0 b

20:4n-3 5.3 ± 0.3 a 2.1 ± 0.02 b 2.2 ± 0.2 b 2.2 ± 0.0 b 0.0 ± 0.0 c

20:5n-3 64.4 ± 1.1 a 60.0 ± 1.6 a 24.0 ± 3.1 b 24.9 ± 0.8 b 19.8 ± 0.8 b

22:5n-3 4.0 ± 0.0 a 0.2 ± 0.2 b 0.1 ± 0.5 b 0.3 ± 0.03 b 0.1 ± 0.01 b
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Table 6. Cont.

Fatty Acid Type
Test Diet

6F0C 5F1C 4F2C 2F4C 0F6C

22:6n-3 147.2 ± 5.3 133.7 ± 2.8 123.3 ± 1.5 112.4 ± 7 100.0 ± 0.0
∑n-3 fatty acids 237.8 ± 2.6 209.6 ± 1.7 161.8 ± 3.0 152.3 ± 1.1 131.9 ± 3.1

∑PUFA 1 315.7 ± 2.1 298.4 ± 5.3 284.6 ± 0.0 283.3 ± 1.1 275 ± 2.3
∑-3HUFA 2 225.4 ± 0.5 197 ± 2.5 150.2 ± 2.9 140.4 ± 4.30 121.0 ± 5.2

∑n-3/n-6 ratio 3 3.0 2.3 1.3 1.2 1.0
∑EPA + DHA 4 211.6 ± 1.3 a 193.7 ± 0.0 a 147.3 ± 0.0 a 137.3 ± 0.0 ab 119.8 ± 0.3 b

Values are expressed as mean ± standard error (n = 2). Absence of superscript letters refers to non-significant dif-
ferences between treatments (p > 0.05) and presence of different superscript letters refers to significant differences
between treatments (p < 0.05). 1 Total PUFA is expressed as the sum of total n-3 fatty acids and total n-6 fatty
acids. 2 Total n-3HUFA is expressed as the sum of n-3 fatty acids in carbons of more than 20. 3 The n-3: n-6 ratio
is expressed as total n-3 PUFA divided by total n-6 PUFA. 4 The sum of eicosapentaenoic acid (C20:5n-3) and
docosahexaenoic acid (C22: 6n-3) are essential fatty acids.

3.3. Apparent Nutrient Digestibility

Apparent digestibility of the different diets with varying CO inclusion in relation
to chain length for red seabream is shown in Table 7. Generally, n-3 fatty acids (95–97%)
exhibited higher apparent digestibility, and saturated fatty acids (SFA) showed lower
apparent digestibility percentages (88–93%). There was no significant difference (p > 0.05)
in the apparent digestibility of MUFA among the experimental groups. Fish fed the 5F1C
diet showed lower digestibility values of saturated, n-6 (88.1%), and n-3 fatty acids (92.1%),
and the highest values were in the 4F2C group (93.6% saturates, 97% MUFA; 97.7 %; n-6
and 99%; n-3).

Table 7. Apparent digestibility (%) of fatty acids.

Fatty Acid Type
Test Diet

6F0C 5F1C 4F2C 2F4C 0F6C

14:0 91.2 ± 3 92.5 ± 2 94.1 ± 6 96.0 ± 1 96.6 ± 2
16:0 94.3 ± 1 86.4 ± 1 91.7 ± 07 92.3 ± 3 90.7 ± 1
18:0 95.3 ± 0 85.1 ± 2 95.2 ± 6 88.6 ± 6 85.5 ± 5

∑Saturated 93.6 ± 0 88.0 ± 3 93.6 ± 3 92.3 ± 9 90.9 ± 1
16:1n-9 93.5 ± 1 93.7 ± 1 98.2 ± 1 96.9 ± 13 94.1 ± 0.1
18:1n-5 95.0 ± 2 97.5 ± 1 92.3 ± 1 97.7 ± 0.1 95.9 ± 7
18:1n-9 92.7 ± 0.1 89.6 ± 5 98.2 ± 8 96.8 ± 1 95.1 ± 1
20:1n-9 92.1 ± 2 92.1 ± 2 98.2 ± 5 96.1 ± 0 94.6 ± 21
22:1n-9 99.1 ± 2 99.4 ± 1 98.2 ± 2 95.3 ± 2 97.0 ± 1

∑MUFA 94.5 ± 6 94.5 ± 1 97.0 ± 2 96.6 ± 6 95.3 ± 21
18:2n-6 93.6 ± 3 84.4 ± 3 98.5 ± 6 97.3 ± 3 96.1 ± 1
18:3n-6 94.1 ± 2 97.5 ± 4 94.6 ± 0.1 97.7 ± 2 96.3 ± 0
20:4n-6 93.6 ± 5 83.0 ± 6 99.0 ± 0 97.0 ± 0 96.0 ± 00
22:4n-6 94.2 ± 0.1 95.5 ± 1.0 98.6 ± 0.1 97.6 ± 0.0 94.7 ± 0.2

∑n-6 fatty acids 93.9 ± 0.1 90.1 ± 2.1 97.7 ± 0.2 97.4 ± 2.6 95.8 ± 0.3
18:3n-3 95.1 ± 0.6 81.2 ± 0.9 99.2 ± 0.1 98.5 ± 4.1 97.9 ± 0.0
18:4n-3 95.5 ± 0.01 97.0 ± 0.2 99.4 ± 0.0 99.0 ± 0.0 97.1 ± 0.0
20:3n-3 95.3 ± 0.2 88.6 ± 0.8 99.4 ± 0.5 98.8 ± 2.0 96.7 ± 0.3
20:4n-3 95.1 ± 0.01 94.4 ± 0.1 98.6 ± 0.3 98.6 ± 0.1 97.4 ± 0.5
20:5n-3 95.7 ± 0.3 95.2 ± 0.5 98.4 ± 0.4 98.5 ± 0.1 97.8 ± 0.1
22:5n-3 98.7 ± 0.1 94.8 ± 0.7 99.8 ± 0.1 98.9 ± 0.3 97.2 ± 0.4
22:6n-3 94.6 ± 0.2 93.5 ± 1.5 99.6 ± 0.0 97.6 ± 0.9 96.6 ± 0.1

∑n-3 fatty acids 95.7 ± 0.01 92.1 ± 1.7 99.2 ± 0.0 98.6 ± 0.5 97.2 ± 0.4
∑PUFA 1 94.8 ± 0.2 91.1 ± 3.0 98.4 ± 0.0 98.0 ± 0.2 96.5 ± 0.4

∑-3HUFA 2 95.9 ± 0.4 93.3 ± 0.1 99.2 ± 0.04 98.5 ± 0.2 97.1 ± 0.1
∑n-3/n-6 ratio 3 1.02 1.02 1.01 1.0 1.04
∑EPA + DHA 4 95.2 ± 0.2 94.3 ± 0.1 99.0 ± 0.2 98.0 ± 0.1 97.2 ± 0.2

Values are expressed as mean ± standard error (n = 2). Absence of superscript letters refers to non-significant
differences between treatments (p > 0.05). 1 Total PUFA is expressed as the sum of total n-3 fatty acids and total
n-6 fatty acids. 2 Total n-3HUFA is expressed as the sum of n-3 fatty acids in carbons of more than 20. 3 The n-3:
n-6 ratio is expressed as total n-3 PUFA divided by total n-6 PUFA. 4 The sum of eicosapentaenoic acid (C20:5n-3)
and docosahexaenoic acid (C22: 6n-3) are essential fatty acids.
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3.4. Blood Chemical Parameter

The hematocrit and plasma chemical parameter results are tabulated in Table 8. Sub-
stitution of FO with CO at increasing rates showed no significant differences (p < 0.05)
in blood composition in terms of hematocrit (36–33%), glucose (Glu = 78.3–71.3 mg/dL),
total protein (T-pro = 3.1–3.8 g/dL), total cholesterol (T-chol = 196.0–241 mg/dL), blood
urea nitrogen (BUN = 9.0–14.6 mg/dL), total bilirubin (T-Bil = 0.4–0.5 mg/dL), triglyceride
(TG = 393.3–497.6 mg/dL), alanine aminotransferase test (ALT = 50–65.5 Ul/L), aspartate
aminotransferase test (AST= 38–69.3 Ul/L).

Table 8. Blood health of red seabream (Pagrus major) fed the experimental diets for 56-days.

Parameters
Test Diets

6F0C 5F1C 4F2C 2F4C 0F6C

Haematocrit (%) 36.0 ± 1.1 37.3 ± 3.1 36.3 ± 3.1 36.6 ± 1.2 33.0 ± 4.2
Glucose (mg/dL) 72.3 ± 4.0 71.3 ± 14.3 78.3 ± 10.5 72.3 ± 19.0 88 ± 5.5

Serum total protein (g/dL) 3.1 ± 0.1 3.4 ± 0.2 3.8 ± 0.4 3.3 ± 0.0 3.4 ± 0.2
Total Cholesterol (mg/dL) 213.6 ± 8.9 238.0 ± 24.2 241.6 ± 6.9 196.0 ± 8.0 229.6 ± 21.6

BUN (mg/dL) 11.3 ± 2.0 8.3 ± 2.0 13.0 ± 3.2 14.6 ± 1.2 9.0 ± 1.1
T-Bil (mg/dL) 0.4 ± 0.1 0.4 ± 0.1 0.4 ± 0.0 0.5 ± 0.0 0.5 ± 0.0

Triglyceride (mg/dL) 393.3 ± 62.6 476.6 ± 23.3 437.6 ± 62.3 415.0 ± 58.0 497.6 ± 2.3
ALT (UI/L) 52.3 ± 11.3 65.5 ± 15.4 64.3 ± 7.6 50 ± 1.3 53.0 ± 3
AST (UI/L) 43.0 ± 10.5 44.0 ± 29.1 38.0 ± 4.8 42.3 ± 9.5 69.3 ± 16.3

Data represent the mean ± SEM (n = 3). Absence of letters indicates no significant difference between treatments
(p > 0.05). Alanine aminotransferase test; ALT, aspartate aminotransferase test; AST, blood urea nitrogen; BUN,
total bilirubin, T-Bil.

3.5. Antioxidants Capacity

Figures 1 and 2 show CAT and SOD activities in the liver, muscle, and plasma of red
seabream after 56 days of the experimental period. No remarkable alterations in CAT and
SOD levels were observed, except in the liver. Replacing FO with CO in a ratio of 4:2 (4F2C)
did not cause any difference in the values of the liver CAT and SOD, while a remarkable
reduction occurred with the complete substitution of FO with CO (0F6C), and the highest
values were observed in the control and (4F2C).
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3.6. Hepatic Histological Examination

Cross-sections of the liver of red seabream fed experimental diets for 56 days are
shown in Figure 3. Small lipid droplets and lipid vacuoles of the hepatocytes were clear in
fish groups fed on 6F0C and 2F4C, and more pronounced in the fish fed the 0F6C diet than
in those fed the 5F1C and 4F2C diets.
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Figure 3. Cross-section in liver of red seabream fed experimental diets for 56 days. Arrows indicate small lipid droplets 
and lipid vacuoles of the hepatocytes. Hematoxylin and eosin (H&E) Staining, scale = 50 μm). 
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4. Discussion
4.1. Growth Performance and Nutrient Utilization

The results of the present trial demonstrated that diets containing CO could completely
replace FO without negatively affecting the growth performance and health status of red
seabream. Previous studies have shown that FO can be partially substituted by vegetable
canola oil (FM: 50%) [25] and palm oil (FM: 67%) [21] in the red seabream diet. Growth
performance of red seabream juveniles was gradually impeded by incremental dietary palm
oil, and the decline in growth could have been caused by the lowering of EPA and DHA in
diets [21]. FO can be completely substituted with vegetable oil to satisfy the requirements
of n-3 HUFA [26]. Koshio [26] recommended inclusion of 5–10 g/kg of the diet for limited
essential n-3 highly unsaturated fatty acids EPA and DHA, respectively, for juvenile red
seabream. The present study is consistent with studies by Betancor, et al. [14] (FM: 49.8%,
FM: 25%) on gilthead sea bream and Hixson, et al. [13] (FM: 34.9%, FM: 47.7%) on rainbow
trout (Oncorhynchus mykiss), which did not show significant differences in growth response
to dietary FO full substitution with CO. We attribute the growth maintenance to proportions
of EPA and DHA incorporated in diets as well as fish meal, which might have compensated
for the low LC-PUFA in CO.

In the present feed trial, the addition of dietary CO did not completely alter the body
composition of red seabream. Although the present study showed a slight increase in crude
lipid in FO control compared to all other diets, it did not warrant changes in overall red
seabream performance and health across all red seabream groups. Similarly, red seabream-
fed canola oil diets (FM: 50%) exhibited a uniform chemical proximate composition in
all parameters [25]. The fatty acid compositions of vegetable oils and IFO are inherently
different. Therefore, substituting FO with vegetable oils inevitably influences ARA, EPA,
and DHA [27]. In the present study, the contents of EPA, DHA, and Σn-3 PUFA in juvenile
red seabream decreased with increasing CO replacement levels, and C18:1n-9, C18:2n-6,
and C18:3n-3 PUFA increased with the corresponding increase in FO replacement by CO.
The results reflected the changes in fatty acid profiles of their respective diets to a great
extent, indicating that dietary fatty acid profiles strongly influenced fatty acid composition
in the muscle and liver of red seabream. It is worth highlighting that ARA, EPA, and
DHA in the liver and muscle of red seabream were mirror images of those detected in
the respective diets. Thus, our present study has shown that the fatty acid elongase and
fatty acid oxidase enzymes in the liver and muscle of juvenile red seabream were not
expressed when dietary FO were replaced by CO. We speculate that the almost exclusively
similar levels of ARA, EPA, and DHA in diets and tissues indicate that red seabream has
limited capacity to biosynthesize DHA and EPA from short chain fatty acids, including
ALA. Bell, et al. [28] reasoned that marine fish have a poor ability to synthesize long-chain
PUFAs. The n-3:n-6 ratio between diets and tissues was constant, indicating efficient
bioconversion of n-3 PUFA from CO. High levels of n-3 LC-PUFA in CO are vital for
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effective replacement of FO in diets for marine species, such as sea bream, that have limited
capacity to endogenously produce DHA and EPA and depend on their inclusion in the
diet [9]. Therefore, it is worth noting that CO has an important twin effect as it maintains
EPA and DHA levels in the liver and filets, while at the same time fostering a better n-3:
n-6 ratio that plays great immunomodulatory and pathological roles in fish and human
health. Transgenic camelina oil, at full replacement of FO, was effective substitute for FO
as a dietary lipid source of n-3 LC-PUFA in diets for rainbow trout. Fish fed high levels of
transgenic camelina oil enriched with EPA and DHA (HCO diet) had FA profiles that were
generally similar to those of fish fed FO [29].

4.2. Fatty Acid Digestibility

The apparent digestibility estimations (ADC fatty acid) obtained in the present trial
were generally high and consistent with those reported previously for red seabream [30]
as well as those of other species. CO is highly digestible (95.9%) and is utilized as an
energy source by Atlantic salmon [31]. Double bonds are fundamental determinants of the
unsaturation of fatty acids. Highly unsaturated fatty acids with more carbon molecules
are easily melted and easily diffuse [32]. Therefore, highly unsaturated fatty acids are
likely to be easily digested because of their high melting points [33]. In this analysis,
n-3 was found to be the most easily digested fatty acid, followed by n-6, saturated fatty
acids, and monounsaturated fatty acids, which were the least digestible. Ultimately, the
combination degree of unsaturation and the melting point of individual fatty acids resulted
in the apparent digestibility of PUFA < MUFA < SFA and short-chain < longer-chain fatty
acids, as reported extensively for several species [33]. Our present study shows a slight
modification to the previously reported PUFA < SFA < MUFA, but similarly maintains that
PUFAs are more easily digested than saturated and mono-unsaturated fatty acids.

4.3. Blood Chemistry

Blood parameters are reliable indicators of fish health and are dependent on envi-
ronmental cues such as temperature, season, and nutritional status [34,35]. The results of
the present trial show that all blood parameters and hematocrit mirrored those previously
reported for red seabream [35], and there were no statistical differences among different
red seabream groups fed different diets.

4.4. Lipid Peroxidation

Previous research has shown that dietary ingredients, including vegetable oils, have an
influence on lipid peroxidation. The present trial investigated the impact of dietary de novo
CO on oxidative stress stability as an important parameter in the nutritional evaluation of
FO alternatives. Polyunsaturated fatty acids (PUFAs) in aquafeeds, particularly EPA and
DHA, are highly susceptible to reactive oxygen species (ROS) and reactive nitrogen species
(RNS), which form peroxides and free radicals [36]. Peroxidation is deleterious because it
damages tissue cells and subsequently alters physiological and biochemical processes. The
first line of the oxidative defense mechanism is enzymatic, including catalase (CAT), su-
peroxide dismutase (SOD), glutathione reductase (GR), and glutathione peroxidase (GPx),
as well as low molecular weight substances such as thiorbaburtic acid reactive substances
(TBARS), vitamins (C and E), glutathione (GSH), bilirubin, and flavonoids [37–39].

Oxidative stress occurs when excess free radicals are produced in the body, includ-
ing ROS and RNS [40,41]. When the oxidation level exceeds the removal of oxides, cells
and tissues are damaged [42,43]. SOD and CAT enzymes are fundamental for defense
against oxygen radicals, thereby preventing a chain of reactions triggered by superox-
ide radicals [44,45]. TBARS are non-enzyme low molecules that play a similar role in
scavenging free radicals [46,47]. Changes in the activities of these enzymes within the
antioxidant system often denote oxidative disturbance that may promote stress and usually
orchestrated by surpassed generation of free radicals/ ROS against antioxidants/enzymes
functions in the cell or tissues [48]. Additionally, the imbalance (in the antioxidant system)
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created can trigger oxidative condition, leading to cellular damage and predisposes the
organisms to multiple disease conditions [48,49]. The results of the present study show
that no remarkable differences in CAT and SOD were observed except for in the liver, as
a remarkable reduction occurred with the complete substitution of FO with CO (0F6C),
and the highest values were observed in the control and (4F2C). The overarching trend
shows that the red seabream oxidation resistance were enhanced after CO substitution of
FO. CAT is an essential enzyme in biological defense systems. However, the levels of CAT
in this experiment were not significantly different [50,51]. The results of the present study
correspond with earlier observations by Long, et al. [52], who reported that the activities of
total antioxidant capacity SOD and CAT showed a declining trend with increasing dietary
FO replacement level, indicating that increased blended vegetable oil levels in the diets
may have reduced the oxidation level in the hemolymph of the crabs.

4.5. Histomorphology of Liver

The results show the increase in lipid accumulation and hepatic adipose infiltration
in the liver of fish fed the 6F0C, 2F4C, and 0F6C diets compared to those fed 5F1C and
4F2C diets. Several reports have shown that lipid infiltration in cell vacuoles becomes
pronounced as vegetable oil replaces FO. We opinion that feeding with alternative plant
oil sources did not impair the liver and intestine tissues probably by alleviating the role
of ROS via improved antioxidative and proinflammatory responses [53]. However, in the
present study, it did not damage the cells. Hepato- and viscera somatic indices represent
the proportion of liver and viscera weights to whole-body weight, respectively, and can
be used as indices of the nutritional status of red seabream [54] (FM: 28%) because the
liver and viscera are energy storage organs. Results showed no significant changes in
the HSI and VSI between red seabream groups, indicating that CO did not cause liver
impairment. Previous studies on FO replacement using alternative lipid sources have
reflected histomorphology alterations in tissues. For instance, supranuclear accumulation
of lipid droplets was observed in the intestinal cells of some of the groups fed diets
supplemented with vegetable oils (FM: 30%) [55]. Similarly, livers from these groups
showed large amounts of lipid droplets within the hepatocytes. In contrast, Bell, et al. [56]
reported a high degree of vacuolization due to lipid deposition in the livers of turbot
fed marine FO (FM: 40%). This was not observed in fish fed diets containing borage oil.
Accumulation of lipid droplets in enterocytes from the pyloric caeca and midgut has been
observed in Arctic charr fed linseed oil [57]. Tissue histopathological interpretation of
ultramphological alterations is difficult but can provide basic information for a thorough
understanding of the metabolism of nutrients, including fatty acids, in various lipid sources.

5. Conclusions

The results of the present study suggest that FO can be replaced with CO in the feeds
of farmed red seabream without compromising growth, blood chemistry, digestibility, and
overall histological morphology. It is important to establish that alternative dietary lipids
to FO are not only supplied in the correct proportions and balance for optimal growth and
feed conversion but can maintain optimal health function and sustain overall biochemical
and physiological responses. The present study shows that normal growth and overall
health can be more successfully attained if dietary FO is replaced by CO, which provides a
more physiologically balanced biochemical composition. In the future, bimolecular studies
would provide interesting information on the mechanisms for the utilization of CO in the
diets of marine species.
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