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A B S T R A C T

The present study was conducted to investigate the effects of CoQ10 dietary supplementation on growth per-
formance, feed utilization, blood profile, immune response, and oxidative status of Nile tilapia (12.4 ± 0.11 g,
initial body weight). Five experimental diets were formulated containing CoQ10 at levels of 0, 10, 20, 30,
40 mg kg−1 diet (D1, D2, D3, D4, and D5, respectively). The results of a 56-days feeding trial showed that,
significantly higher weight gain % (WG %), specific growth rate (SGR), feed intake (FI), and feed efficiency ratio
(FER) were recorded in fish groups fed diets supplemented with different levels of CoQ10 than fish fed the
control diet, while survival rate (SR%), condition factor (CF), hepatosomatic index (HSI) and viscerasomatic
index (VSI) showed no obvious differences (P > 0.05) among all experimental groups. The highest activities of
digestive enzymes (protease, amylase, and lipase) were recorded in D3, D4, and D5 groups. Moreover, blood
status of all experimental fish was within normal rates and significant alterations were only in the case of
glucose, cortisol, total cholesterol (T-Chol), triglycerides, and total protein (TP), where fish fed on D3, D4 and D5
diets exhibited lower values of glucose, cortisol, T-Chol, and triglycerides and higher values of TP. Furthermore,
the lowest values of immune response [lysozyme, bactericidal, respiratory burst (NBT), and alternative com-
plement pathway activities (ACP)], antioxidant capacity and oxidative related genes expressions [superoxide
dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX)] resulted from feeding on the basal diet (D1)
compared to CoQ10 diets, especially with its high levels {≥20 mg kg−1 diet (D3, D4, and D5)} in most cases. In
conclusion, our results suggest that the use of ≥20 mg CoQ10 kg-1 diet improves the growth and health being of
Nile tilapia.

1. Introduction

Rapid and influential expansions in the aquaculture sector, parti-
cularly intensive farming as an ideal option for the production of a
considerable amount of safer high-quality animal protein, have in-
creased the focus of the studies on overcoming the unfavorable impacts
and stressful conditions of intensification [1–3]. Fish is more suscep-
tible to disease outbreak in intensive aquaculture [4] and the basis for

the success of aquaculture is good management [5]. Chemotherapeutics
or/and antibiotics were the most common approach to cope with dis-
eases [6,7], but with increased anxiety about the consequences of fre-
quent use (e.g. the development of resistant pathogens strains, accu-
mulation of toxic residues, suppression of immune system, and
environmental hazards) [8,9], their use in several countries has pre-
vented [3]. As promising and effective alternatives to antibiotics, eco-
friendly natural strategies and/or functional feed additives such as
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medicinal herbs, probiotics, prebiotics, and synbiotics, have attracted
researchers' attention [10–13].

One candidate example found naturally in the biological system and
most cells is coenzyme Q10 (CoQ10) or ubiquinone, a hydrophobic
molecule [14], which exists in the inner membrane of mitochondria
where plays a pivotal role in the electron transport chain (ETC) and
generates energy (ATP) by transfer electrons from dehydrogenases
(NADH) to complex II (succinate) to complex III (ubiquinone cyto-
chrome c oxidase) of ETC [15–17]. Coenzyme Q10, especially its re-
duced form (ubiquinol), is an effective antioxidant and free radical
scavenger that provides a protection to DNA, cells membrane, lipids
and proteins from the risks of oxidative damage, helps regenerating of
vitamin E and support healthy energy levels [18–21].

The bioactive compound CoQ10 is considered as a super-vitamin
(vitamin Q) that exhibits potent antioxidant amplitude, which is formed
in the body in insufficient quantities especially under stresses and
therefore need to be obtained from an external source [22]. The addi-
tion of CoQ10 helps to improve human and animal health in the case of
many diseases such as diabetes, obesity, muscular dystrophy, heart
disease, periodontal disease, cancer, Alzheimer, aging, etc. [23–27].
Also, in vitro studies suggest its anti-inflammatory potency [28,29].
Because of the multiple benefits of CoQ10, the potential therapeutic
advantages and the ease of synthesis either in biological or chemical
methods made it one of the distinctive material of high demand in the
market along with some other compounds such as vitamin C, vitamin E,
alpha-lipoic acid, and L-carnitine [15,30]. In addition, CoQ10 solubility
in lipids and organic solvents and water insolubility make it an ideal
supplement for aquatic animal feed.

To our best knowledge, there is a lack of studies on the use of CoQ10
in the aquatic animals. Therefore, this study is designed to evaluate the
use of CoQ10 on Nile tilapia (Oreochromis niloticus) performance and
health as one of the most prevalent cultivated species in the world (2nd
place with>65% of the total aquaculture production) due to its con-
venience for farming and high marketability while maintaining a good
marketing price [31]. Intensification of tilapia culture makes fish more
susceptible to disease and stresses [32,33]. Our hypothesis suggests that
the use of CoQ10 as a feed supplement may boost the growth, utiliza-
tion of nutrients, blood profile, immune response, and oxidative status.
This study could be the basis for future research on the use of CoQ10,
not only with Nile tilapia but also for other aquatic species.

2. Materials and methods

2.1. Ethical approval

The study was fulfilled in accordance with the standards of animal
care and use for scientific purposes approved by the Ethics Committee
of Tanta University, Egypt.

2.2. Experimental design and diets preparation

Five experimental diets (≅30.5% crude protein and ≅18.05 kJ g−1)
were prepared by supplementing the basal diet (Table 1) with graded
levels of CoQ10 (C9538 Sigma-Aldrich, USA) at 0 (control), 10, 20, 30,
and 40 mg kg−1 diet at the expense of starch. CoQ10 was thoroughly
mixed with fish oil and sunflower oil before adding other ingredients
then water was added at 10% with continued mixing for extra 15 min
until the texture was pasted and then pelleted using a California mill
machine with 2 mm diameters [33]. The pellets were air-dried at room
temperature in a dark place to avoid degrading of CoQ10 [34]. All diets
were kept at −20 °C in a freezer until use. The chemical composition of
the test diets was verified according to the standard analysis methods
[35] (Table 1).

2.3. Fish maintenance

The present study was conducted under the supervision of Fish
production branch, Animal Production department, Faculty of
Agriculture, Tanta University in cooperation with Animal and Fish
Production Department, Faculty of Agriculture, Alexandria University,
Egypt.

Juveniles of Nile tilapia (O. niloticus) were purchased from a com-
mercial fish hatchery located in Kafrelsheikh, Egypt and after two
weeks of adaptation period to the experimental conditions in a 1000-L
tank with feeding on a 30% crude protein diet, 300 fish (initial body
weight = 12.4 ± 0.11 g) were distributed into 15 glass aquaria (5
treatments in triplicates; 20 fish/aquarium; 100 l). All tanks were
supplied with air generators and 50% of the water was changed daily
with clean chlorine-free water at the same temperature under 12: 12hrs
light: darkness photoperiod regime for 56 days.

The mean values of daily measurements of water properties during
the experiment period were: T°C = 25.2 ± 0.39 (Thermometer),
pH = 6.9 ± 0.75 (Portable digital pH meter Martini Instruments
Model 201/digital), dissolved oxygen (DO, mg l−1) = 7.3 ± 04
(Waterproof Portable Dissolved Oxygen and BOD Meter model Hanna
waterproof IP67), and total ammonia-nitrogen (TAN, mg
l−1) = 0.06 ± 02 (Colorimetrically: Spectronic 601, Milton Roy
Company, San Diego, CA, USA). All water measured values were within
the optimal ranges for rearing Nile tilapia [2,33].

2.4. The feeding trial, sampling schedule, and analytical procedures

2.4.1. Feeding protocol
The feeding trial lasted for 56 days in which fish were hand-fed

twice at a specific time of day (08:00 and 16:00) at a percentage of wet
body weight (4% for 2 weeks and 3% for 6 weeks) which is re-adjusted
every two weeks according to the actual fish biomass in the tanks after
the batch-weights of the fish. After 3 h of feeding time, uneaten feed is
withdrawn from the tanks by siphoning and dried to calculate the ac-
tual feed intake (FI). At the end of the feeding trial, feeding was stopped
for 24 h prior to final sampling to reduce fish handling stress.

2.4.2. Growth parameters, feed utilization and biometric indices
The weight and length of each fish were measured separately.

Growth parameters and feed utilization were calculated according to

Table 1
Basal diet ingredients and proximate chemical analysis (%).

Ingredients Proximate compositionc

Fish meal (72%) 10.5 Dry matter (DM) 90.48
Soybean meal (44%) 42 Crude protein (CP) 30.50
Wheat bran 10 Crude lipids (CL) 7.77
Yellow corn 18.5 Ash 6.97
Rice bran 10 Gross energy (KJ g−1)d 18.05
Fish oil 2.5
Sunflower oil 1.5
Vitamins mixture a 1
Minerals mixture b 1
Starch 3
Total 100

a Vitamins mixture (kg): vitamin A (3300 IU), vitamin B1(133 mg), vitamin
B2 (580 mg), vitamin B6 (410 mg), vitamin B12 (50 mg), biotin (9330 mg),
vitamin C (2660 mg), Colin chloride (4000 mg), vitamin D1 (410 IU), inositol
(330 mg), niacin (26.60 mg), Para-amino benzoic acid (9330 mg), pantothenic
acid (2000 mg).

b Minerals mixture (kg): cobalt (5 mg), copper (25 mg), iodine (5 mg), iron
(200 mg), manganese (325 mg).

c Proximate analyses were performed in triplicates.
d Gross energy (KJ g−1): calculated mathematically by multiplying the

combustion coefficient of protein (23.6), lipid (39.5), and carbohydrate (17.2)
in their ratio in diets.
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the following formulae [36,37]:
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−

×Weight Gain (WG %)   W    W
W
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−
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L

1003

Where, WT = final body weight; W0 = initial body weight; T = the
trial period in days (d); N0 = initial number of fish; NT = final number
of fish; W = total weight (g); L = total length (cm).

Five fish were taken randomly from each aquarium (15 per treat-
ment), anesthetized (3 ml pure clove oil: 10 ml of 40% ethyl alcohol)
and the liver and viscera were eviscerated on the ice surface. Liver
weight relative to body weight was used to calculate the hepatosomatic
index (HSI) and viscera weight relative to body weight was used to
calculate the viscerasomatic index (VSI). The gastrointestinal tract was
separated from the rest of the viscera and washed with PBS (pH 7.5; 1 g
per 10 ml), then homogenized and centrifuged for 5 min at 8000 rpm
and the supernatant was then kept at 4 °C for the assessing of digestive
enzyme activities. Besides, parts of the collected organs (liver and in-
testine) were immediately frozen in liquid nitrogen for the further
analysis.

2.4.3. Digestive enzyme activities
Intestine protease activity was measured using casein as a substrate

following the assay of Sigma's non-specific protease activity [38].
Amylase and lipase activities were quantified spectrophotometrically at
A540 and A714 according to the modified methods of Wang et al. [39].

2.4.4. Blood and skin mucus sampling
After 24 h of the final weigh scaling, 15 anesthetized fish per

treatment were assigned for sampling skin mucus and blood. Skin
mucus was collected from a constant area (200 mm2) of dorsal side skin
using a plastic frame just before blood was collected according to the
method of Ross et al. [40]. Blood was sampled using a sterile syr-
inge ± heparin (anticoagulant) from the fish caudal vessels. Haema-
tocrit was assessed in the partial heparinized whole blood by the cen-
trifugation (13,000 rpm for 5 min) of samples placed into micro-
haematocrit tubes according to the methods of Goldenfarb et al. [41].
Non heparinized syringes were used to collect blood for serum se-
paration. Serum and plasma were collected undercooling (4 °C) at a
speed of 3000 rpm for 10 min. Plasma and serum samples were kept at
−20 °C until the analysis.

2.4.5. Blood hematological and biochemical indices
Plasma hematology [haemoglobin (Hb), red blood cells (RBCs) and

white blood cells (WBCs)] and serum biochemical profile [glucose,
cortisol, total protein, cholesterol, triglycerides, alanine transaminase
(ALT) and aspartate transaminase (AST)] were determined using Semi-
automatic analyzer for clinical chemistry and hematology tests- Model
2000 Evolution, EMEG using Bayer Diagnostics Reagents strips fol-
lowing the manufactory guidelines.

2.4.6. Non-specific immune responses
Serum and mucus lysozyme activities were diagnosed with 96-well

microplate turbidimetric assay utilizing Micrococcus lysodeikticus (lyo-
philized cell, Sigma-Aldrich, India) as described by Lygren et al. [42].
Serum or mucus samples (10 μl) were placed into 96 microplate tubes,
and then the substrate mixture [190 μl of 0.2 mg of Micrococcus lyso-
deikticus ml−1 PSB, pH = 7.4] were added with soft shaking at room
temperature. Changes in turbidity values were measured after 1 and
5 min, at 450 nm. A unit of enzyme activity was defined as the amount
of enzyme that causes a decrease in absorbance of 0.001/min.

Bactericidal activities of serum and mucus were assessed spectro-
photometrically at 570 nm according to the modified methods of
Gallage et al. [43] as described by Wang et al. [44]. Briefly, serum or
mucus samples were mixed with the bacterial suspension (Streptococcus
agalactiae 1.4 × 108) in a 1: 1 ratio (50 μl sample: 50 μl bacterial
suspension) at 25 °C for 2.5 h by using micro-tube rotator (Wavex –
Tube Rotator E11270). After incubation, mixtures were placed into 96-
microplate tubes with 15 μl 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-
2H-tetrazolium bromide MTT (Sigma-Aldrich, Egypt) (5 mg ml−1) for
15 min at 25 °C with soft shaking and the resulted formazan was dis-
solved with 50 μl of dimethyl sulfoxide (DMSO). Bacterial suspension in
PBS without serum or mucus samples served as a positive control. The
optical density (OD570) for each sample was assessed in triplicate and
the antimicrobial activities presented as a percentage of S. agalactiae
inhibition relative to the positive control as follow:

=

−

×S agalactiae. inhibition %  
OD  OD

OD
100Control Sample

Control

Whole blood respiratory burst activities were quantified spectro-
photometrically at 630 nm by performing nitro blue tetrazolium (NBT)
assay according to the modified method of Secombes [45]. Alternative
complement pathway activities of serum samples (ACP) were defined
following the method described by Yanno [46] and Van Doan et al.
[47].

2.4.7. Antioxidant potential assessment and oxidative related genes
Tissues samples (liver and intestine of 15 fish/treatment) were

homogenized (Homogenizer VEVOR, FSH-2A) in cold iced NaCl
(0.86%), then centrifuged (10 min, 12,000 rpm, 4 °C) and the super-
natant was collected for superoxide dismutase (SOD), catalase (CAT)
and glutathione peroxidase (GPx) colorimetric analyses with a specific
detection kits (JianCheng, Nanjing, China) using a microplate spectro-
photometer at 550, 280, 412 nm following the manufacturer's in-
structions. One unit of SOD enzyme activity equals the amount of su-
peroxide dismutase needed to inhibit 50% of the nitrobluete trazolium
reduction [48]. One unit of CAT enzyme activity was defined as the
needed amount of CAT to transform 1 μmol of H2O2 min−1 [49]. GPx
enzyme activity unit is the required amount of GPx to oxidize 1 μl of
NADPH min−1 [50].

The gene expression trial focused on the genes associated with
oxidation (SOD, GPX and CAT) [51–53] and was performed in tripli-
cates using quantitative real-time PCR (qRT-PCR) in the collected tis-
sues (liver and intestinal samples kept at −80 °C; 15 fish per treat-
ment). About 50–100 mg of collected samples were utilized to extract
RNA using RNeasy Mini (Qiagen, Hilden, Germany) following manu-
facturer's guidance. The extracted RNAs were subjected to 1.5% agarose
gel electrophoresis in TAE buffer under a stable voltage condition
(100 V) using E-Gel Agarose System to verify RNA integrity, while the
concentration was defined using a spectrophotometer. First-strand
cDNA was obtained by the reverse transcriptase of 1–2 μg pure RNA
using SuperScript IV Reverse Transcriptase cDNA synthesis kit as de-
scribed by Amin et al. [33].

Selected genes and a stable internal housekeeping standard (β-actin)
were amplified using a specific primer set (Sigma-Aldrich Chemie
GmbH, Steinheim, Germany) (Table 2) [53] and amplification products
were tested by melting curve analysis at the end of each PCR reaction.
SOD, GPX and CAT mRNA expressions in liver and intestine were as-
sessed by real-time quantitative PCR (qRT-PCR) and the amplification
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mixture and thermal profile were designed following the manufac-
turer's protocol of the SYBR® Premix Ex Taq™ II Kit (Takara Bio, Otsu,
Japan). The relative values of mRNA expression were calculated using
2−ΔΔCT algorithm with β-actin as the house keeping endogenous re-
ference [54].

2.5. Statistical analysis

The data were analyzed statistically using IBM® SPSS® Statistics
program version 22 (SPSS Inc., IL, USA) and expressed as means ±
standard errors (S.E.) of triplicate values. The homogeneity and nor-
mality of variance were inspected by Shapiro-Wilk and Levene tests and
then one-way ANOVA and Duncan's post hoc tests were performed at a
5% probability level.

3. Results

3.1. Fish growth, feed efficiency and biometric indices

Table 3 summarizes the growth, feed utilization, and biometric in-
dices of Nile tilapia fed the experimental diets for 56 days. Significantly
higher growth performance and feed utilization were recorded in fish
groups fed diets supplemented with CoQ10 compared to fish fed the
control diet, while SR, CF, HSI, and VSI shown no obvious differences
(P > 0.05). Moreover, there were no appreciable differences
(P > 0.05) in weight (WG and SGR) and feed efficiency (FI and FER)
among fish groups fed on diets with different levels of CoQ10.

3.2. Digestive enzyme activities

Intestine enzymes activities (protease, amylase, and lipase) of Nile
tilapia after 56 days trial period were shown in Table 4. CoQ10 sup-
plementations at a rate of ≥20 mg kg−1 diet (D3, D4, and D5) max-
imize the activity of protease, amylase, and lipase. Conversely, fish fed
the basal diet (D1) had the lowest significant lipase and protease per-
formance compared to their analogs. Meanwhile, no statistically dif-
ference (P > 0.05) in amylase activity between fish groups fed D2 diet
(10 mg CoQ10 kg-1 diet) and D1.

3.3. Blood hematological and biochemical indices

Table 5 represents the blood hematological and biochemical para-
meters of Nile tilapia fish after 56 days experimental period. No sig-
nificant differences were found in Ht (%), Hb (g dl−1), RBCs (106 μl−1),
WBCs (103 μl−1), ALT (IU l−1), and AST (IU l−1) between the experi-
mental groups. Interestingly, fish fed diet contain CoQ10 a rate of
≥20 mg kg−1 diet (D3, D4, and D5) exhibited lower values of glucose
(mg dl−1), cortisol (ng dl−1), T-Chol (mg dl−1), and triglycerides (mg
dl−1) and higher values of TP (g dl−1).

3.4. Non-specific immune responses

Serum and mucus lysozyme activity of Nile tilapia is presented in
Fig. 1-A. The lowest values of lysozyme activity in both serum and
mucus were recorded in fish fed on the basal diet (D1) and the highest
value of mucosal lysozyme was observed in fish groups fed on CoQ10
diets, while the highest activity of serum lysozyme was found in fish
groups fed on diets with high levels of CoQ10 ≥ 20 mg kg−1 diet (D3,
D4, and D5).

Data on serum and mucus bactericidal activity of Nile tilapia are
presented in Fig. 1-B. Serum and mucus bactericidal activity positively
exhibited higher values in the groups reared on CoQ10 diets and the
lower values were recorded in fish fed with D1.

Respiratory burst (Nitro-blue Tetrazolium, NBT) showed higher
values in CoQ10 groups compared with the control (Fig. 2-A). Values of
serum alternative complement pathway activities (ACP) were higher
(P < 0.05) in fish groups fed on D3, D4, and D5 when compared with
other groups (D1, D2) (Fig. 2-B).

3.5. Antioxidant potential assessment and oxidative related genes

Results of SOD, CAT and GPX are shown in Fig. 3. Significantly
higher SOD, CAT, and GPx values were observed in fish groups fed on
D3, D4, and D5 diets, while the lower values were in fish fed D1. Gene
expression analysis detected a significant (P < 0.05) upregulation of
liver and intestine SOD, CAT, and GPx expressions in fish fed CoQ10
diets at different levels compared to control group, with high values in

Table 2
Oligonucleotide primers set used for qRT-PCR analysis.

Gene Sequence (5′-3′)
F= Forward – R = Reverse

Annealing T Amplicons size (Pb) Accession number Reference

SOD F GGTGCCCTGGAGCCCTA 60 377 JF801727.1 [53]
R ATGCGAAGTCTTCCACTGTC

CAT F TCCTGAATGAGGAGGAGCGA 60 232 JF801726.1 [53]
R ATCTTAGATGAGGCGGTGATG

GPx F CCAAGAGAACTGCAAGAGA 60 180 FF280316.1 [53]
R CAGGACACGTCATTCCTACAC

β-actin F CAATGAGAGGTTCCGTTGC 60 280 EF206801 [53]
R AGGATTCCATACCAAGGAAGG

Table 3
Growth, nutrient efficiency and biometric indices of Nile tilapia fed test diets (D1 = 0; D2 = 10; D3 = 20; D4 = 30; D5 = 40 mg CoQ10 kg-1 diet) for 56 days.

Item Test diets

D1 D2 D3 D4 D5

WG (%) 197.64 ± 4.30b 240.81 ± 5.21a 246.35 ± 6.62a 249.35 ± 6.81a 242.80 ± 6.01a

SGR (% WG day−1) 1.95 ± 0.03b 2.19 ± 0.03a 2.22 ± 0.03a 2.23 ± 0.04a 2.20 ± 0.03a

FI (g/fish/56 days) 37.92 ± 0.10b 40.08 ± 0.17a 40.13 ± 0.22a 39.95 ± 0.31a 39.69 ± 0.17a

FER 0.64 ± 0.01b 0.74 ± 0.01a 0.76 ± 0.03a 0.77 ± 0.02a 0.76 ± 0.02a

SR (%) 95.00 ± 2.89 96.67 ± 1.67 100.00 ± 0.00 98.33 ± 1.67 98.33 ± 1.67
CF (%) 1.79 ± 0.12 1.81 ± 0.08 1.82 ± 0.03 1.82 ± 0.01 1.81 ± 0.01
HSI (%) 2.01 ± 0.15 2.10 ± 0.20 2.04 ± 0.18 2.05 ± 0.11 2.10 ± 0.06
VSI (%) 6.32 ± 0.32 6.55 ± 0.52 6.71 ± 0.83 7.02 ± 0.44 6.47 ± 0.54
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fish fed on D3, D4, and D5 diets (Fig. 4).

4. Discussion

Cultivation of aquatic animals at high densities requires precise
strategies to achieve the desired production and quality and also to
cope with the consequences of intensification. Recently there are many
approaches used in boosting and modulating fish growth and well-

being, including fermentation [13], modern aquaculture systems [e.g.
aquaponics, recirculatory aquaculture system (RAS), biofloc technology
(BFT), compensatory growth technology} [55–57], and nutraceuticals
feed additives {probiotics, prebiotics, synbiotics, immunostimulant
agents, exogenous enzymes, hormones, nucleotides, medicinal plants,
organic acids or acidifiers, and antioxidants] [1]. Dietary im-
munostimulants are known to be a useful application for enhancing
performance and disease resistance in fish [58]. CoQ10 is a natural

Table 4
Digestive enzymes activities (amylase, lipase, protease) of Nile tilapia fed test diets (D1 = 0; D2 = 10; D3 = 20; D4 = 30; D5 = 40 mg CoQ10 kg-1 diet) for 56 days.

Enzyme activit (U mg−1) Test diets

D1 D2 D3 D4 D5

Amylase 23.02 ± 0.59b 25.30 ± 0.57 b 31.73 ± 0.92a 31.70 ± 0.94a 30.95 ± 1.04a

Lipase 24.80 ± 0.75c 27.11 ± 0.56b 36.44 ± 0.59a 35.61 ± 0.74a 35.87 ± 0.67a

Protease 17.62 ± 0.72c 19.53 ± 0.28b 24.87 ± 0.09a 24.70 ± 0.55a 24.09 ± 0.58a

Values represent Means ± S.E. (n = 5). Means in the same row bearing different superscript are significantly different at (P < 0.05).

Table 5
Blood hematological and biochemical parameters of Nile tilapia fed test diets (D1 = 0; D2 = 10; D3 = 20; D4 = 30; D5 = 40 mg CoQ10 kg-1 diet) for 56 days.

Item Test diets

D1 D2 D3 D4 D5

Haematocrit (Ht, %) 29.23 ± 1.21 29.95 ± 0.54 30.36 ± 0.26 29.74 ± 1.29 29.61 ± 1.38
Hemoglobin (Hb, g dl−1) 7.24 ± 0.07 7.80 ± 0.15 7.71 ± 0.34 7.77 ± 0.18 7.48 ± 0.30
Red blood cells (RBCs, 106 μl−1) 1.98 ± 0.02 2.47 ± 0.09 2.46 ± 0.26 2.57 ± 0.29 2.04 ± 0.04
White blood cells (WBCs, 103 μl−1) 68.77 ± 3.95 76.96 ± 8.89 79.46 ± 2.91 80.33 ± 3.24 79.69 ± 0.62
Glucose (mg dl−1) 82.92 ± 1.11a 76.72 ± 0.44b 69.49 ± 0.52c 70.13 ± 0.74c 71.39 ± 0.62c

Cortisol (ng ml−1) 42.59 ± 0.36a 35.39 ± 0.67b 34.69 ± 0.51b 35.05 ± 0.12b 35.74 ± 0.32b

Total protein (TP, g dl−1) 2.19 ± 0.02c 2.66 ± 0.06ab 2.89 ± 0.07a 2.82 ± 0.06a 2.45 ± 0.14b

Total cholesterol (T-Chol, mg dl−1) 87.40 ± 0.63a 84.84 ± 1.19ab 80.26 ± 1.22c 83.11 ± 0.57bc 82.71 ± 1.42bc

Triglyceride (mg dl−1) 102.59 ± 1.17a 98.93 ± 1.80ab 94.58 ± 1.48b 97.57 ± 0.94b 96.77 ± 1.66b

Alanine transaminase (ALT, IU l−1) 81.55 ± 0.91 77.69 ± 1.80 77.02 ± 1.74 76.98 ± 1.99 76.77 ± 0.71
Aspartate transaminase (AST, IU l−1) 32.77 ± 0.44 31.60 ± 0.73 31.32 ± 0.71 31.31 ± 0.81 31.09 ± 0.28

Results are expressed as Means ± S.E. (n = 5). Means in the same row bearing different superscript are significantly different at (P < 0.05).

Fig. 1. Lysozyme and bactericidal activities in serum and mucus of Nile tilapia fed the experimental diets (D1 = 0; D2 = 10; D3 = 20; D4 = 30; D5 = 40 mg
CoQ10 kg-1 diet) for 56-days.
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substance with a strong antioxidant impact that has been studied sig-
nificantly in humans [25] and some animals [59,60], while there is a
lack of studies on its effect on farmed fish. To this end, in the present
study Nile tilapia was used as a widespread model worldwide to test the
efficacy of CoQ10 in modifying and improving growth and health
status. CoQ10 as an inexpensive obtainable dietary supplement has
been proven to yield a broad range of advantageous impacts [61]. The
natural sources of CoQ10 vary from prokaryotic organisms to eu-
karyotic organisms including a large number of bacteria, some of which
use as probiotics [15].

The results of growth and utilization of nutrients showed an im-
provement with the addition of CoQ10 in the diet. The enhanced feed
utilization in terms of feed intake (FI) and feed efficiency ratio (FER)
might be one of the reasons for the boosted growth in fish fed on CoQ10
diets. Increased nutritional efficiency may also be associated with the
improved intestine condition due to modulating intestine microflora or
CoQ10 anti-inflammatory properties [28]. Also, the results of digestive
enzymes activity (protease, amylase, and lipase) confirm this im-
provement as enzymes activity could extend further insight into the
prospective impacts of diets on growth performance and feed utilization

Fig. 2. Respiratory burst (Nitro-blue Tetrazolium, NBT) and serum alternative complement pathway (ACP) values for Nile tilapia fed the experimental diets (D1 = 0;
D2 = 10; D3 = 20; D4 = 30; D5= 40 mg CoQ10 kg-1 diet) for 56-days. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

Fig. 3. Antioxidant indicators (SOD, CAT, and GPx) in Nile tilapia fish reared on experimental diets (D1 = 0; D2 = 10; D3 = 20; D4 = 30; D5 = 40 mg CoQ10 kg-1

diet) for 56-days.
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[2]. This amelioration in growth, utilization of feed and digestive en-
zymes may be due to the indirect effect of CoQ10 on re-synthesis of
vitamin E [18–21]. Moreover, the role of CoQ10 in the carbs cycle
makes it an important pivot in the metabolism of carbohydrates, pro-
tein, and lipids [15–17]. Also, the effects of CoQ10 treatment on in-
sulin, glucagon and cortisone hormones support the positive role in
improving the performance of fish [62]. In this context, Gopi et al. [63],
reported better feed efficiency and production score with high energy
diet supplemented with CoQ10 at 20 mg kg−1 diet in broiler. Also,
Geng et al. [64], observed remarkable higher weight gain with com-
parable feed intake and feed efficiency with CoQ10 supplement at the
level of 40 mg kg−1 diet. moreover, Huang et al. [65], reported an
enhancement in the weight gain at the level of 20–40 mg CoQ10 kg-1

diet.
Blood indicators are accurate tools that reflect the health status of

fish as well as the response to external stimuli and stressors [36,37]. In
general, measurement values of blood indices recorded in the present
study are within the acceptable limits for Nile tilapia [2]. Also, no
considerable changes were noticed in the activities of liver metabolic
enzymes (ALT and AST) reflecting the absence of CoQ10 toxicity at any
levels used in this study. Glucose and cortisol are realistic indicators of
the existence of stressors as they increase with stress and decreases in
well-being [66,67]. Interestingly, levels of glucose and cortisol have
been decreased in fish fed CoQ10 supplemented diets when compared
with fish fed un-supplemented diet; this could be linked either to hy-
poglycemic hormone stimulation (insulin) or reduction in glucose ab-
sorption [36,68]. Also, cholesterol and triglyceride levels were de-
creased and this may linked to the hypocholesterolemic effect of CoQ10

[68,69]. Conversely, higher total protein (TP) contents were observed
in fish fed with high levels of CoQ10 (≥20 mg kg−1 diet), which may
indicate an improvement in fish health or could be a post-injury or
infection adaptation response [70].

Nutrients supplementation may alter the immune responses of fish
by impressing directly or indirectly on immune cells through metabolic,
neurological, or endocrine pathways [13]. Phagocytosis is a vital de-
fense mechanism line in fish which utilizes in lysozyme activity, bac-
tericidal activity (BA), respiratory burst activity (Nitroblue Tetra-
zolium, NBT), and alternative complement pathway activities (ACP)
[70,71]. Lysozyme is considered one of the most significant non-specific
defense lines of natural immune system and used to assess the ability of
the immune system in many fish species as a result of its anti-microbial
activities [5]. Leucocytes cell produce lysozyme, which lysis the wall of
microbial cells and thus stimulate the lysozyme production, activates
the immunity complement system [72]. It is worth to be mentioned
NBT activity issued as an important indicator of the innate immune
defense mechanism in fish [73]. Bactericidal activity (BA) serves as a
pivotal factor of the host to withstand pathogens [74]. The results of
improved immunological parameters with CoQ10 supplements can be
explained by maintaining a healthy energy level, reducing stresses,
enhancing mitochondrial respiration, protecting cells membranes, and
maximizing the level of vitamin E [61].

The antioxidant defense system is highly linked with fish health
status and the immune system [36]. Oxidative stress arises from the
lack of balance between production and disposal of reactive oxygen
species (ROS) [75]. Superoxide dismutase (SOD), catalase (CAT), and
glutathione peroxidase (GPX) as vital components of the antioxidant

Fig. 4. Analysis of oxidative related genes (SOD, CAT, and GPx) expression in the liver and intestine of Nile tilapia fed the experimental diets (D1 = 0; D2 = 10;
D3 = 20; D4 = 30; D5 = 40 mg CoQ10 kg-1 diet) for 56-days.
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defense system play important roles in removing excessive ROS, sus-
taining the homeostasis of the cell [2,70]. SOD, CAT and GPx values
and their gene expression were significantly higher in fish groups fed at
≥20 mg CoQ10 kg-1 diets indicating the high capacity of CoQ10 as an
antioxidant. Also, the enzyme activities (SOD, CAT, and GPx) and their
gene expressions were higher in the liver compared to the intestine,
demonstrating the important role of the liver in the antioxidant defense
system as previously mentioned [27,51]. It is well known that, CoQ10 is
considered as a super-vitamin (vitamin Q) that exhibits potent anti-
oxidant amplitude, free radical scavenger that provides a protection to
DNA, cells membrane, lipids and proteins, helps regenerating of vi-
tamin E and support healthy energy levels, improve health in case of
many disease [18–27].

5. Conclusion

Dietary inclusion of CoQ10 at level of ≥20 mg CoQ10 kg-1 diet
improves the growth, health being and compensate for the harmful
impacts of oxidative stress in Nile tilapia.
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